Programming Languages &
Emerging Hardware

Peter Braam

Physics Dept, Oxford
Oct 2019

mailto:peter@braam.io

me

1980 1997 2002 2013 PAONRS
@ L J
math physics @oxford (gauge theory,
CFT) ® °
distributed systems cs @cmu
® °

@6 startups & jobs @3 acquirers - Lustre

taught OS

course for
“Computing
Laboratory”

\ 4

SKA @cambridge

[
@oxford

work with 100’s of largest compute centers and many
major system & CPU/GPU vendors)

A 4

New Hardware

Revolutionary Hardware Evolutionary Hardware
Al/ML accelerators - Faster RAM
Image processing accelerators - Persistent RAM

Open Instruction sets - RISC-V
New number formats
Very many cores

Anti-development: increasing
network & memory bottlenecks

Software support for new Hardware

Domain Specific PL support Evolutionary Software
ML as overpowering - Dealing with persistent RAM
successor to HPC - Cache coherency many cores
user level - Programming for hybrid
compiler level memory types
Mathematics as program . Great diversity of HW

specifications for ML and HPC

e Evolution away from von Neumann architecture
e Industry developing widely adopted practical solutions
® Great opportunities for research

Seminar Series

From HotChips 2019
AMD Keynote

100%

80%

60%

40%

20%

(U

*
——
O —
e ——
T —

PERFORMANCE GAINS §
OVER THE PAST DECADE

.

J

'ﬂ

Lisa Su, CEO

¢

= |Integration of System Components
= Micro-Architectural Efficiency
= Power Management

= Software

= More Silicon Power
= Bigger Die

HIGHER PERFORMANCE, DENSER, LOWER
POWER TRANSISTORS

FIFMFENTS OF 2¥ IN 2 § YFAR PFRFORMANCF GAIN OVFR THF PAST DFCADF

Hardware

Hardware this talk

In this talk I will only focus on memory & accelerators.

Memory Technologies

Now:
e Faster on-package memory: HBM
e Persistent memory: Optane / xPoint

Coming:
e Atleast a few dozen memory
technologies are being explored
e 3D memory / logic integrated chips

DATA MOVEMENT HITS THE MEMORY WALL
ABUNDANT-DATA APPLICATIONS: ENERGY MEASUREMENTS

Corporate Research,
TSMC

8%
15% 20%
AlexNet ResNet-152 Language Model
(CNN) (CNN) (LSTM) e
85% 80% 92%
|28GB DRAM
Memory [Compute
Deep Learning Accelerators %

Source: S. Mitra (Stanford) Intel performance counter monitors 2 CPUs, 8-cores/ CPU + 128GB DRAM

HBM-high bandwidth memory

Key features:
- HBMZ2 16GB capacity
- 250-400 GB/s BW
- ~5-10x > DRAM BW
Hardware control:
- HBM s a cache
- HBMis part of address space
Technology:
- 2.5D - using many vertical TSV's (through
silicon via)
- on-chip interposer with 1024 (instead of
32) signalling pins (explains 10x BW increase)

packages with integrated memory and
compute are becoming standard

11

Many chips and accelerators are moving

SUPER A| ACCELERATOR towards this architecture
ENABLED BY CoWoS®

chip on wafer on substrate
"SRR N on

RERREERE]L

| Bk
HBM2 - - - - U HBM2

|

11
Il

HERE ' "‘
Bom—
HB& ARERER P :HBM2

IRRERREELE R
s W

>300 B transistors

Source: “Inside Volta” , Nvidia GPU Tech. Conf. , May 10, 2017. '

Memory - Logic Integration Will Likely Continue

N3XT project models
and samples. Target
perhaps 2030’s
technology

1000x Energy gain
10x lower latency
100G-1TB on package

Key innovation: logic
(for compute) and
memory created with
one process (PIM -
blue)

COMPUTE-MEMORY INTEGRATION

High Density On-Chip

Nonvolatile Memory
High Speed On-Chip
Nonvolatile Memory

N3XT System

Nonvolatile T |/
Memory Cells W
Energy Efficient Logic
(Thin Device Layers)
Energy Efficient Memory Dense ILV Connectivity
Access Transistors (Nanometer Scale)
Si Logic Die

Source: W. Hwang, W. Wan, Y. Malviya, H. Li, M. Lee, M. Aly, H.-S. P. Wong, S. Mitra. Work in prograss 2017 — 2019w/ TSMC

Key issues with memory

e Apps always want more in one node
o distributed execution is seriously hampered by network bandwidth

e Most applications are seriously memory bound
Latency remains high for apps moving small data

Energy of data movement is major consideration:
o HBM-50p]/ byte

o Large scientific experiments are looking for 100 PB/sec - i.e. 5 MW in data movement

14

Persistent Memory -
Optane

Many new memory technologies promise
“persistent RAM".

Source: Intel, available now

_ byte addressable watch orders of magnitude \
- non-volatile
Technology | Latency Bandwidth
Intel Optane (xPoint) is first commodity Rd Wr
product.
DRAM 50ns | 50ns | 13GB/sec

Cheaper than RAM, costlier than Flash.
NAND flash 50us | 15us | 3GB/sec

Spin Transfer Torque (STT) RAM may move
the numbers by at least a further order of Disk 10ms | 10ms | 100MB/sec
magnitude b

Large memory configurations

Typically hardware has provided cache-

coherency among pieces of memory: L1,2,3 and

RAM.

Increasing core counts
- consume a lot of chip real estate
- consume energy
- cause performance overhead

Virtually no instructions exist to control
memory caches.

Cache Coherence Protocol and Memory Performance of the Intel
Haswell-EP Architecture, Daniel Molka etal, ICPP 2015

Multicore Cache Coherence Control by a Parallelizing Compiler,
, etal, COMPSAC 2017

Compiler driven cache control can be more
efficient. An extreme example is the Graphcore
IPU accelerator & SW stack:

- 2000 cores, each with “local memory”

GPU + DRAMs IPU pair with
on interposer distributed SRAM

16GB @ 900GB/s 600MB @ 90TB/s, zero latepgy

IPU IPU

https://waseda.pure.elsevier.com/en/persons/hironori-kasahara
https://waseda.pure.elsevier.com/en/persons/keiji-kimura

Google TPU

Google’s Pixel Visual Core
Perhaps around 100
accelerator companies, big &

Accelerators small exist

Investors tell me all startups
fight huge software battles for
. A o compilation!
Al is providing a market where it is Architectures vary widely
economical. Reason: power, Cost,
performance

Chip Development is Hugely Expensive.

Advanced Design Cost

Chip Manufacturing Is expensive

$580M

$435M

$290M

$145M

$OM

$542.2M

-—— Validation

_—

$297.8M

Prototype

$174.4M

$28.5M

$37.7M

$51.3M

—

$106.3M

$70.3M g

Software

= Physical

Verification

™ Architecture

65nm

40nm

28nm

22nm 16nm

10nm

High performance chips need
newest processes (low nm'’s).

Profitability requires shipping
high number of units, like TM.

ML and phones among few
areas where this seems
possible

Focus is shifting to “domain
specific hardware” - c.f.
Hennessey & Patterson Turing

IP Qualification \W 31 d.

18
Source: IBS, 2018

Accelerators

Commercial successes for high performance

accelerators have been modest, with notable
exceptions:

- reconfigurable computing (FPGA's)
- GPU’s

- ML accelerators

- Google: TPU's and Pixel Visual Core

There are many startups and main-stream
efforts for reconfigurable computing and ML -
NYT mentioned 45 in Jan 2018.

Wk 6, Nov 20, Simon Knowles, Graphcore

€he New York Times

Big Bets on A.I. Open a New
Frontier for Chip Start-Ups, Too

or——‘“— : ml,,, \“

»/ - ;
- d
S o (/
]
“Colossus” IPU pair
(300W PCle card) 2432 processor tiles >200Tflop,¢ 3, ~600MB
card-to-card = =) card-to-card
links - - links
host I/O = host /0
PCle-4 ¢ - PCle-4
card-to-card - = card-to-card
links - - links
all-to-all exchange spines each ~8TBps 19
@ ScaledML 2018 link + host bandwidth 384GBps/chip 15

TPU - PCI ML accelerators: cards & clusters

TPU v3 PCl accelerator card

TPU v3 POD (“cluster”)

20

Example of ML hardware: TPU chips

TPU chips have 4 systolic arrays MXU (matrix multiply unit)

Register

ALU

reducing memory accesses by ~100x:

Bl

Partial Sums

Pass data between ~100K ALU's. Small processing units,
using a global clock, no registers.

Only for TensorFlow ops.
~100T Ops/cycle (limited precision)

SRR B

Matrix Multiplier Unit (MXU) of TPU

27

Neural Network Model (TPU Estimator)
TensorFlow Client

grpc over TCF

System Organization

Send TF graph as a whole to a TF node

Send individual XLA generated operations
with their data to the TPU accelerator. LA

This includes instructions and data. The

TPU does not fetch instructions like a CPU grpc over PCl

TPU v3.0 specs

TPU 3.0 card TPU 3.0 node TPU pod
#TPU’s 1 card, 4 chips, 16 MXU 4 cards 1024 cards, 256 nodes
mem BW 5 TB/sec 20 TB/sec 5 PB/sec
flops / sec (*) | 100 TF/sec 400 TF/sec 100 PF/sec

Operations per clock cycle Instruction model is TensorFlow op RPC to

chip
CPU 10’s
(cores) Read_Host_Memory
CPU vectorized 1000 (core x Write_Host_Memory

Read_Weights

vector length
gth) MatrixMultiply/Convolve

-c|-;|:F>)LLJJ 12;: Activate (ReLU, Sigmoid, Maxpool, LRN, ...)
(TPU v1) =

This should raise eyebrows ...

256 nodes for 5PB/sec of BW and 100PF 777 Possible further enablers:

pretty much a top 5 machine in top500.org 1. Are TensorFlow operations sufficient for

with 100x fewer systems (or 25x fewer HPC?

allowing for 16 vs 64 bit precision). 2. does a more general systolic network
interconnect offer more opportunities?

It would work very well for moderate granularity 3. Is mixed floating point precision required?

computations, like SKA (and Al for which it was
made). Wouldn't help with AMR likely, but
surrogates may do that.

(cf. posithub.org)

GPU’s around 2003 evolved to GPGPU's
through HPC.

24

Energy per Op (pJ/Op)

PV(- pixel visual core (Google) D

i IPU IPU
L : . ‘f=f' Core4 Core3
Objective: save power for image processing PVC has IPU's o o
(and Al) in cameras. Each IPU has ; | Core 6 Core 5
- memory beoda | BU. | PUL
Keep it programmable (Halide subset). - 8STPand 8 LBP ‘ ‘Core 8
- comms

Internal architecture is complex: line buffers

connect stencil processing cores ' O i) EEEEC | Each STP has:
1 L1 1 L1 1 L 11 | L1 1
! [rmne :: Do | e 256 cores
1 1 |
1 1 ! } : :l | W e : : : L1l | 10 = I 1
— 10x, :Scalar lane : E e — : : * ALU focus
Programmable = GPU e e -Il EEL |:: EEEEELT ::) nelghbor
>100 pJ/Op Programmable Image u - H [
~1-10 Giga Ops/Sec Processing Unit (IPU) | L ——— | | memaory
10-20x <1 pJ/Op NoC “: EEEEEEEEEEEEEEEL : ! access
10-20X — >1 Tera oPs/sec : L1 1 1 L1 1 11 1 111 I :
» - -~ { 198 2= | I T P L .
(_PVCSIPU 1 o, s — "
- Not-programmable 1 P !
~__-—<‘|pJ/0p — : L1 LI lll::lll :|:
>1 Tera Ops/Sec = Cz;pjﬁane I H | Group 1 : !
> R ﬁ:t‘:rrl‘;‘:‘:fc’)“sm : | 16x16 Compute Array | : 25
» — 08 | et o i i -)
I

STP: 20x20 Array !

Performance (Op/sec)

Languages and Compilers

Persistent Memory

Great opportunities but with
software challenges

In practice, used as RAM or storage
device (

27

Persistent Memory

Much memory will become persistent, but not SRAM used for caches, registers
etc. Hence PM requires specific cache flush machine instructions.

PM reads currently on-par with RAM, but writes are 10x slower. Hence PM will be
used in conjunction with faster memory for caching.

28

Restartable programs

But transactions require lock ordering and do not compose. Software
Transactional Memory overcomes this, can be used with PM?.

Key challenge 1: automatically transform code for volatile memory data
structures into code that is meaningful with persistent memory. Even for a linked
list, this is not so simple?.

Key challenge 2: If all or most memory in computers is non-volatile - programs
should restart after battery exhaustion (and maybe after failures)

1. Composable Memory Transactions, Tim Harris Simon Marlow Simon Peyton Jones Maurice Herlihy
2. Relayed to me by Intel's lead of PM software, Andy Rudoff

29

Hardware Mechanisms Rule

Memory Tiers

Probably extremely good software
opportunities

Tiers of memory / memory layout

Compiler is targeting systems with complex data in a complex memory layout

- multi dimensional arrays with tiles, slices, alignment, etc.
- storage class memory, RAM, HBM, level 1-3 caches
- cache coherency sometimes for dozens of cores

it is unlikely that hardware memory management solutions do a great job.

i1

Memory Tier Opportunities

Array calculations and HBM Compressed data movement
e (Consider ultra-popular package for array e |n scientific problems, precision is lost
calculations: NumPy only during computation
e NumPy uses Python memory e Data movement, storage is very costly
management with optimized kernels o eg new radio telescope needs 200
e When should NumPy arrays be PB/sec memory bandwidth

o costis 10 MW in power

e Major improvement: store and
transport compressed arrays of
adequate, lower precision.
Decompress only during
computation.

e Managing near-core data out of “the

John Gustafson, week 2 may say more address space” not well supported

cached (e.g. placed in HBM)?

e Suggestion (Simon Peyton-jones): the
garbage collector is best place to make
this decision (in this case Python's GC)

32

Compiler Challenges

LLVM innovation & challenges

MLIR

33

LLVM

Around 2000 LLVM was invented

LLVM is a software virtual machine
separate HW specific aspects from remainder of the compiler

Apple based its C compiler on this CLANG, numerous other languages followed.,

in 2010's abstractions for vector instructions, GPU's and FPGA's were embedded
in LLVM. Even CUDA compiler leveraged LLVM.

Interview: Chris Lattner: Compilers, LLVM, Swift, TPU, and ML Accelerators | Artificial Intelligence Podcast,
https://bit.ly/31iFY70

34

However ... language specialization

e Optimizations often remained part of the e The ML accelerators came with
compiler above LLVM completely different instruction sets
e New languages required new e Usability of the languages was affected by
intermediate layers which LLVM didn't this.
support e During Apple’s Swift development and
e Much duplication in optimization Google’s TensorFlow this came to a
head.......

Java & JVM > I
Languages Java BC

C, C++, ObjC,

CUDA, OpencL, ... —>|_Clang AST | LLVM IR —>| Machine IR |-—> Asm

swift > Swift AST]——)[SIL IR

Rust > RustAST |—>{ MIRIR

Julia = Julia AST |—>{ Julia IR

TensorFlow > [
Ecosystem

TF Graph }+—>| XLA HLO »

Tensorflow intermediate formats

The TensorFlow compiler ecosystem

Grappler

a

A

TensorFlow
Graph

N

XLA HLO

Tensor RT

J
nGraph]

/
ﬁ
>

4

Core ML }

\[TensorFlow Lite

<Many others

TensorFlow targets:

Several others

TFO

NNAPI

CPU

GPU
distributed

TPU / edge TPU
training and
inference mode
edge devices

ptimizations:

Fusion

Graph pruning

Graph splitting
Constant handling
Array tiling 6

MLIR - Google project
Multi-Level Intermediate Representation Compiler Infrastructure

- similar to LLVM in spirit, addressing recent issues

- dialects with custom instructions (e.g. LLVM dialect, TF dialect)
- flexible definition of SSA intermediate formats

- generically usable polyhedral optimization

- traceability

Hope: eliminate all custom IR’s in the world. Ambitious, but great!

Github: https://github.com/tensorflow/mlir
Wk 8, Dec 4: Albert Cohen, MLIR.

37
D

Programming in
Mathematics Domains

LLVM innovation & challenges
TensorFlow Complexity

MLIR

38

Machine Learning / Scientific Computing

Important/Shameless Advertisement: Thursdays 14:30 | and Miha Zgubic
run “ML & Physics” seminar in Wilkinson Building.

What is special about Machine Learning and its eco-system?
Answer: extended types! Tensorsin the language, tensor-friendly hardware.

e Scientific computing takes this further: tensors + differential / integral
operators. Applied mathematics uses dozens of types.

e Pure mathematics uses hundreds of types (Sheaves, Number fields...)

e Programming languages only mildly helpful.

39

Scientific Computing Problems

Scientific problems often have an extremely short full specification along the
following lines:

- solve a differential equation F(D, v) = 0 for v, given the operator F(D, -)
- let v obey initial and boundary conditions

- select a mesh, discretization and solver to approximate the solution
- here we enter "known programming terrain”

If the programming language is enhanced with types and a calculus for these
mathematical objects, programming becomes much simpler.

Nov 6, Wk 4 - Prof. Paul Kelly, Firedrake .

40

Domain Specific Languages

Very many domain specific languages have been developed:
- for Machine Learning
- for High Performance Computing
- Image Processing

A few are hugely successful: NumPy, TensorFlow, Halide

However:
- most DSLs rely on complex library functions which, e.g. cannot be fused
- many chosen domains are too narrow. E.g. Halide is truly a fantastic image
processing DSL, yet not for noisy, sparse astronomy data
- there are too many DSL's

41

Halide DSL example

Func blur_3x3(Func input) {
Func blur_x, blur_y;
Var x, y, xi, yi;

Halide image processing

State of the art in separating computation from

// The algorithm - no storage or order

blur_x(x, y) = (input(x-1, y) + input(x, y) + input(x+1, y))/3; mechanism.
blur_y(x, y) = (blur_x(x, y-1) + blur_x{(x, y) + blur_x(x, y+1))/3;

// The schedule - defines order, locality; implies storage s the future perhapS SOmethmg like the fO”OWIﬂg7

blur_y.tile(x, y, xi, yi, -)

.vectorize(xi, 2).parallel(y); . .
blur_x.compute_at(blur_y, x).vectorize(x, 5); Schedule: a function between linear/dependent

types representing:
- datain the computation
- hardware in the computer

return blur_y;

Note: various Haskell libraries, notably Accelerate,
have similar expressivity.

40

currently not widely
available, nor easily
done

Suggested approach

Conal Elliott, Paul Kelly, Oleg create domain
Kiselov, and many others. specific program

currently we
program here

Challenge 1: CS to design
good systems

avoid duplicated
compiler efforts

we've lost most
type information

Challenge 2: drag domain
here

specialists along

types for hybrid HW and

domain specific data geometric / typed

perspective 100%
lost: bits & bytes43

Conclusions
Thank you.
Questions

Big changes are under way
Industry driven

Deep CS opportunities

44

