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New Hardware

Revolutionary Hardware

- AI/ML accelerators
- Image processing accelerators

Evolutionary Hardware

- Faster RAM
- Persistent RAM
- Open Instruction sets - RISC-V
- New number formats
- Very many cores

Anti-development: increasing 
network & memory bottlenecks
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Software support for new Hardware

Domain Specific PL support

- ML as overpowering 
successor to HPC

- user level
- compiler level

- Mathematics as program 
specifications for ML and HPC

Evolutionary Software

- Dealing with persistent RAM
- Cache coherency many cores
- Programming for hybrid 

memory types
- Great diversity of HW

● Evolution away from von Neumann architecture
● Industry developing widely adopted practical solutions

● Great opportunities for research 4
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From HotChips 2019
AMD Keynote

Lisa Su, CEO
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Hardware
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Hardware this talk

In this talk I will only focus on memory & accelerators.
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Memory Technologies

Now:
● Faster on-package memory: HBM
● Persistent memory: Optane / xPoint

Coming:
● At least a few dozen memory 

technologies are being explored
● 3D memory / logic integrated chips
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Hotchips 2019,
Dr. Philip Wong, VP 

Corporate Research, 
TSMC
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HBM-high bandwidth memory

Key features:
- HBM2 16GB capacity
- 250-400 GB/s BW 
- ~5-10x > DRAM BW

Hardware control:
- HBM is a cache
- HBM is part of address space

Technology:
- 2.5D - using many vertical TSV’s (through 

silicon via)
- on-chip interposer with 1024 (instead of 

32) signalling pins (explains 10x BW increase)

packages with integrated memory and 
compute are becoming standard 11



Many chips and accelerators are moving 
towards this architecture

chip on wafer on substrate
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Memory - Logic Integration Will Likely Continue
N3XT project models 
and samples.  Target 
perhaps 2030’s 
technology

1000x Energy gain 
10x lower latency
100G-1TB on package

Key innovation: logic 
(for compute) and 
memory created with 
one process (PIM -
blue)
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Key issues with memory
● Apps always want more in one node

○ distributed execution is seriously hampered by network bandwidth

● Most applications are seriously memory bound
● Latency remains high for apps moving small data
● Energy of data movement is major consideration:

○ HBM - 50pJ / byte
○ Large scientific experiments are looking for 100 PB/sec - i.e. 5 MW in data movement 
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Persistent Memory -
Optane
Many new memory technologies promise 
“persistent RAM”.  

- byte addressable
- non-volatile

Intel Optane (xPoint) is first commodity 
product.

Cheaper than RAM, costlier than Flash.

Spin Transfer Torque (STT) RAM may move 
the numbers by at least a further order of 
magnitude  

Technology Latency

Rd       Wr

Bandwidth

DRAM 50ns 50ns 13GB/sec

NAND flash 50us 15us 3GB/sec

Disk 10ms 10ms 100MB/sec

watch orders of magnitude

Source: Intel, available now
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Large memory configurations
Typically hardware has provided cache-
coherency among pieces of memory: L1,2,3 and 
RAM. 

Increasing core counts
- consume a lot of chip real estate
- consume energy
- cause performance overhead

Virtually no instructions exist to control 
memory caches.

Cache Coherence Protocol and Memory Performance of the Intel 
Haswell-EP Architecture, Daniel Molka etal, ICPP 2015

Multicore Cache Coherence Control by a Parallelizing Compiler, 
Hironori Kasahara, Keiji Kimura, etal, COMPSAC 2017

Compiler driven cache control can be more 
efficient. An extreme example is the Graphcore 
IPU accelerator & SW stack:

- 2000 cores, each with “local memory”
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Accelerators
Chip Development is Hugely Expensive. 

AI is providing a market where it is 
economical.

- Google TPU
- Google’s Pixel Visual Core
- Perhaps around 100 

accelerator companies, big & 
small exist

- Investors tell me all startups 
fight huge software battles for 
compilation!

- Architectures vary widely
- Reason: power, cost, 

performance
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Chip Manufacturing is expensive
High performance chips need 
newest processes (low nm’s).

Profitability requires shipping 
high number of units, like 1M.

ML and phones among few 
areas where this seems 
possible

Focus is shifting to “domain 
specific hardware” - c.f. 
Hennessey & Patterson Turing 
award.

Source: IBS, 2018
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Accelerators
Commercial successes for high performance 
accelerators have been modest, with notable 
exceptions:

- reconfigurable computing (FPGA’s)
- GPU’s
- ML accelerators
- Google: TPU’s and Pixel Visual Core

There are many startups and main-stream 
efforts for reconfigurable computing and ML -
NYT mentioned 45 in Jan 2018.

Wk 6, Nov 20, Simon Knowles, Graphcore
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TPU - PCI ML accelerators: cards & clusters

20

TPU v3 POD (“cluster”)

TPU v3 PCI accelerator card



Example of ML hardware: TPU chips
TPU chips have 4 systolic arrays MXU (matrix multiply unit) 
reducing memory accesses by ~100x: 

Pass data between ~100K ALU’s.  Small processing units, 
using a global clock, no registers.  

Only for TensorFlow ops. 
~100T Ops/cycle (limited precision) 21



System Organization
Send TF graph as a whole to a TF node

Send individual XLA generated operations
with their data to the TPU accelerator.  

This includes instructions and data. The
TPU does not fetch instructions like a CPU

22

grpc over PCI

grpc over TCP/IP

storage



TPU v3.0 specs
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TPU 3.0 card TPU 3.0 node TPU pod

#TPU’s 1 card, 4 chips, 16 MXU 4 cards 1024 cards, 256 nodes

mem BW 5 TB/sec 20 TB/sec 5 PB/sec

flops / sec (*) 100 TF/sec 400 TF/sec 100 PF/sec

Operations per clock cycle

CPU 10’s 
(cores)
CPU vectorized 1000 (core x 
vector length)
GPU 10K ‘s
TPU 128K 
(TPU v1)

Instruction model is TensorFlow op RPC to 
chip

Read_Host_Memory
Write_Host_Memory
Read_Weights
MatrixMultiply/Convolve
Activate (ReLU, Sigmoid, Maxpool, LRN, …)



This should raise eyebrows ...
256 nodes for 5PB/sec of BW and 100PF ??? 

pretty much a top 5 machine in top500.org 
with 100x fewer systems (or 25x fewer 
allowing for 16 vs 64 bit precision).

It would work very well for moderate granularity 
computations, like SKA (and AI for which it was 
made).  Wouldn’t help with AMR likely, but 
surrogates may do that.

GPU’s around 2003 evolved to GPGPU’s 
through HPC.

Possible further enablers:

1. Are TensorFlow operations sufficient for 
HPC?

2. does a more general systolic network 
interconnect offer more opportunities?

3. Is mixed floating point precision required? 
(cf. posithub.org)
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PVC - pixel visual core (Google)
Objective: save power for image processing 
(and AI) in cameras.  

Keep it programmable (Halide subset).

Internal architecture is complex: line buffers 
connect stencil processing cores

PVC has IPU’s
Each IPU has 

- memory
- 8 STP and 8 LBP
- comms

Each STP has: 
● 256 cores
● ALU focus
● neighbor 

memory 
access

25



Languages and Compilers
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Persistent Memory
Great opportunities but with 
software challenges

In practice, used as RAM or storage 
device :(
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Persistent Memory
Much memory will become persistent, but not SRAM used for caches, registers 
etc.  Hence PM requires specific cache flush machine instructions.

PM reads currently on-par with RAM, but writes are 10x slower.  Hence PM will be 
used in conjunction with faster memory for caching.
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Restartable programs
But transactions require lock ordering and do not compose.  Software 
Transactional Memory overcomes this, can be used with PM1.

Key challenge 1: automatically transform code for volatile memory data 
structures into code that is meaningful with persistent memory.  Even for a linked 
list, this is not so simple2. 
Key challenge 2: If all or most memory in computers is non-volatile - programs 
should restart after battery exhaustion (and maybe after failures)

1. Composable Memory Transactions, Tim Harris Simon Marlow Simon Peyton Jones Maurice Herlihy
2. Relayed to me by Intel’s lead of PM software, Andy Rudoff

29



Memory Tiers
Hardware Mechanisms Rule

Probably extremely good software 
opportunities

30



Tiers of memory / memory layout
Compiler is targeting systems with complex data in a complex memory layout

- multi dimensional arrays with tiles, slices, alignment, etc. 
- storage class memory, RAM, HBM, level 1-3 caches
- cache coherency sometimes for dozens of cores

It is unlikely that hardware memory management solutions do a great job.
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Memory Tier Opportunities
Array calculations and HBM

● Consider ultra-popular package for array 
calculations: NumPy

● NumPy uses Python memory 
management with optimized kernels

● When should NumPy arrays be 
cached (e.g. placed in HBM)?

● Suggestion (Simon Peyton-Jones): the 
garbage collector is best place to make 
this decision (in this case Python’s GC)

Compressed data movement

● In scientific problems, precision is lost 
only during computation

● Data movement, storage is very costly
○ e.g. new radio telescope needs 200 

PB/sec memory bandwidth
○ cost is 10 MW in power

● Major improvement: store and 
transport compressed arrays of 
adequate, lower precision.  
Decompress only during 
computation.

● Managing near-core data out of “the 
address space” not well supportedJohn Gustafson, week 2 may say more
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Compiler Challenges LLVM innovation & challenges

MLIR
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LLVM
Around 2000 LLVM was invented

LLVM is a software virtual machine
separate HW specific aspects from remainder of the compiler

Apple based its C compiler on this CLANG, numerous other languages followed.

in 2010’s abstractions for vector instructions, GPU’s and FPGA’s were embedded 
in LLVM.  Even CUDA compiler leveraged LLVM.

Interview: Chris Lattner: Compilers, LLVM, Swift, TPU, and ML Accelerators | Artificial Intelligence Podcast, 
https://bit.ly/31iFY7o
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However … language specialization
● Optimizations often remained part of the 

compiler above LLVM
● New languages required new 

intermediate layers which LLVM didn’t 
support

● Much duplication in optimization

● The ML accelerators came with 
completely different instruction sets

● Usability of the languages was affected by 
this.

● During Apple’s Swift development and 
Google’s TensorFlow this came to a 
head…….
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Tensorflow intermediate formats

TensorFlow targets:
- CPU
- GPU
- distributed
- TPU / edge TPU
- training and 

inference mode
- edge devices

TF Optimizations:
- Fusion
- Graph pruning
- Graph splitting
- Constant handling
- Array tiling 36



MLIR - Google project
Multi-Level Intermediate Representation Compiler Infrastructure 

- similar to LLVM in spirit, addressing recent issues
- dialects with custom instructions (e.g. LLVM dialect, TF dialect)
- flexible definition of SSA intermediate formats
- generically usable polyhedral optimization
- traceability

Hope: eliminate all custom IR’s in the world.  Ambitious, but great!

Github: https://github.com/tensorflow/mlir
Wk 8, Dec 4: Albert Cohen, MLIR.  
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Programming in 
Mathematics Domains

LLVM innovation & challenges

TensorFlow Complexity

MLIR
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Machine Learning / Scientific Computing
Important/Shameless Advertisement: Thursdays 14:30 I and Miha Zgubic 
run “ML & Physics” seminar in Wilkinson Building.

What is special about Machine Learning and its eco-system?  

Answer: extended types! Tensors in the language, tensor-friendly hardware.

● Scientific computing takes this further: tensors + differential / integral 
operators.  Applied mathematics uses dozens of types.

● Pure mathematics uses hundreds of types (Sheaves, Number fields...)
● Programming languages only mildly helpful.
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Scientific Computing Problems
Scientific problems often have an extremely short full specification along the 
following lines:

- solve a differential equation F(D, v) = 0 for v, given the operator F(D, -)
- let v obey initial and boundary conditions
- select a mesh, discretization and solver to approximate the solution
- here we enter “known programming terrain”

If the programming language is enhanced with types and a calculus for these 
mathematical objects, programming becomes much simpler. 

Nov 6, Wk 4 - Prof. Paul Kelly, Firedrake .
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Domain Specific Languages
Very many domain specific languages have been developed:

- for Machine Learning
- for High Performance Computing
- Image Processing

A few are hugely successful: NumPy, TensorFlow, Halide

However: 
- most DSLs rely on complex library functions which, e.g. cannot be fused
- many chosen domains are too narrow.  E.g. Halide is truly a fantastic image 

processing DSL, yet not for noisy, sparse astronomy data
- there are too many DSL’s
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Halide DSL example
Halide image processing

State of the art in separating computation from 
mechanism.

Is the future perhaps something like the following?

Schedule: a function between linear/dependent 
types representing:

- data in the computation
- hardware in the computer

Note: various Haskell libraries, notably Accelerate, 
have similar expressivity. 
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Suggested approach
Conal Elliott, Paul Kelly, Oleg 
Kiselov, and many others.

Challenge 1: CS to design 
good systems

Challenge 2: drag domain 
specialists along

Mathematical Formulation of Problem
in PL or DSL

Finite 
Elements

Neural 
Nets

Signal
Processing

data type & hardware specific 
optimizations

we’ve lost most 
type information 
here

currently we 
program here

geometric / typed 
perspective 100% 
lost: bits & bytestarget architecture

currently not widely 
available, nor easily 
done

automatically 
create domain 

specific program

avoid duplicated 
compiler efforts

types for hybrid HW and 
domain specific  data 
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Conclusions
Thank you.
Questions

Big changes are under way

Industry driven

Deep CS opportunities
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