
Programming Languages &
Emerging Hardware

Peter Braam
peter@braam.io

Physics Dept, Oxford
Oct 2019

mailto:peter@braam.io

me
1980 20021997 2013

math physics @oxford (gauge theory,
CFT)

distributed systems cs @cmu

@6 startups & jobs @3 acquirers - Lustre

SKA @cambridge

work with 100’s of largest compute centers and many
major system & CPU/GPU vendors

@oxford

2018

taught OS
course for

“Computing
Laboratory”

2

New Hardware

Revolutionary Hardware

- AI/ML accelerators
- Image processing accelerators

Evolutionary Hardware

- Faster RAM
- Persistent RAM
- Open Instruction sets - RISC-V
- New number formats
- Very many cores

Anti-development: increasing
network & memory bottlenecks

3

Software support for new Hardware

Domain Specific PL support

- ML as overpowering
successor to HPC

- user level
- compiler level

- Mathematics as program
specifications for ML and HPC

Evolutionary Software

- Dealing with persistent RAM
- Cache coherency many cores
- Programming for hybrid

memory types
- Great diversity of HW

● Evolution away from von Neumann architecture
● Industry developing widely adopted practical solutions

● Great opportunities for research 4

Seminar Series
Paul Kelly (wk 4)

FireDrake

evolutionary
new PL

principles

domain specific
languages

compilers

domain specific
hardware

evolutionary
hardware

libraries

Peter Braam (wk 1)
overview

Steve Pawlowski (wk 3)
AI and HW

impact

Priyanka Raina (wk 7)
AHA

project
Simon Knowles (wk 6)

Graphcore

Hironori Kasahara (wk 5)
Parallelising

compiler
Albert Cohen (wk 8)

MLIR
John Gustafson (wk 2)

number formats

5

From HotChips 2019
AMD Keynote

Lisa Su, CEO

6

Hardware

7

Hardware this talk

In this talk I will only focus on memory & accelerators.

8

Memory Technologies

Now:
● Faster on-package memory: HBM
● Persistent memory: Optane / xPoint

Coming:
● At least a few dozen memory

technologies are being explored
● 3D memory / logic integrated chips

9

Hotchips 2019,
Dr. Philip Wong, VP

Corporate Research,
TSMC

10

HBM-high bandwidth memory

Key features:
- HBM2 16GB capacity
- 250-400 GB/s BW
- ~5-10x > DRAM BW

Hardware control:
- HBM is a cache
- HBM is part of address space

Technology:
- 2.5D - using many vertical TSV’s (through

silicon via)
- on-chip interposer with 1024 (instead of

32) signalling pins (explains 10x BW increase)

packages with integrated memory and
compute are becoming standard 11

Many chips and accelerators are moving
towards this architecture

chip on wafer on substrate

12

Memory - Logic Integration Will Likely Continue
N3XT project models
and samples. Target
perhaps 2030’s
technology

1000x Energy gain
10x lower latency
100G-1TB on package

Key innovation: logic
(for compute) and
memory created with
one process (PIM -
blue)

13

Key issues with memory
● Apps always want more in one node

○ distributed execution is seriously hampered by network bandwidth

● Most applications are seriously memory bound
● Latency remains high for apps moving small data
● Energy of data movement is major consideration:

○ HBM - 50pJ / byte
○ Large scientific experiments are looking for 100 PB/sec - i.e. 5 MW in data movement

14

Persistent Memory -
Optane
Many new memory technologies promise
“persistent RAM”.

- byte addressable
- non-volatile

Intel Optane (xPoint) is first commodity
product.

Cheaper than RAM, costlier than Flash.

Spin Transfer Torque (STT) RAM may move
the numbers by at least a further order of
magnitude

Technology Latency

Rd Wr

Bandwidth

DRAM 50ns 50ns 13GB/sec

NAND flash 50us 15us 3GB/sec

Disk 10ms 10ms 100MB/sec

watch orders of magnitude

Source: Intel, available now

15

Large memory configurations
Typically hardware has provided cache-
coherency among pieces of memory: L1,2,3 and
RAM.

Increasing core counts
- consume a lot of chip real estate
- consume energy
- cause performance overhead

Virtually no instructions exist to control
memory caches.

Cache Coherence Protocol and Memory Performance of the Intel
Haswell-EP Architecture, Daniel Molka etal, ICPP 2015

Multicore Cache Coherence Control by a Parallelizing Compiler,
Hironori Kasahara, Keiji Kimura, etal, COMPSAC 2017

Compiler driven cache control can be more
efficient. An extreme example is the Graphcore
IPU accelerator & SW stack:

- 2000 cores, each with “local memory”

16

https://waseda.pure.elsevier.com/en/persons/hironori-kasahara
https://waseda.pure.elsevier.com/en/persons/keiji-kimura

Accelerators
Chip Development is Hugely Expensive.

AI is providing a market where it is
economical.

- Google TPU
- Google’s Pixel Visual Core
- Perhaps around 100

accelerator companies, big &
small exist

- Investors tell me all startups
fight huge software battles for
compilation!

- Architectures vary widely
- Reason: power, cost,

performance

17

Chip Manufacturing is expensive
High performance chips need
newest processes (low nm’s).

Profitability requires shipping
high number of units, like 1M.

ML and phones among few
areas where this seems
possible

Focus is shifting to “domain
specific hardware” - c.f.
Hennessey & Patterson Turing
award.

Source: IBS, 2018
18

Accelerators
Commercial successes for high performance
accelerators have been modest, with notable
exceptions:

- reconfigurable computing (FPGA’s)
- GPU’s
- ML accelerators
- Google: TPU’s and Pixel Visual Core

There are many startups and main-stream
efforts for reconfigurable computing and ML -
NYT mentioned 45 in Jan 2018.

Wk 6, Nov 20, Simon Knowles, Graphcore

19

TPU - PCI ML accelerators: cards & clusters

20

TPU v3 POD (“cluster”)

TPU v3 PCI accelerator card

Example of ML hardware: TPU chips
TPU chips have 4 systolic arrays MXU (matrix multiply unit)
reducing memory accesses by ~100x:

Pass data between ~100K ALU’s. Small processing units,
using a global clock, no registers.

Only for TensorFlow ops.
~100T Ops/cycle (limited precision) 21

System Organization
Send TF graph as a whole to a TF node

Send individual XLA generated operations
with their data to the TPU accelerator.

This includes instructions and data. The
TPU does not fetch instructions like a CPU

22

grpc over PCI

grpc over TCP/IP

storage

TPU v3.0 specs

23

TPU 3.0 card TPU 3.0 node TPU pod

#TPU’s 1 card, 4 chips, 16 MXU 4 cards 1024 cards, 256 nodes

mem BW 5 TB/sec 20 TB/sec 5 PB/sec

flops / sec (*) 100 TF/sec 400 TF/sec 100 PF/sec

Operations per clock cycle

CPU 10’s
(cores)
CPU vectorized 1000 (core x
vector length)
GPU 10K ‘s
TPU 128K
(TPU v1)

Instruction model is TensorFlow op RPC to
chip

Read_Host_Memory
Write_Host_Memory
Read_Weights
MatrixMultiply/Convolve
Activate (ReLU, Sigmoid, Maxpool, LRN, …)

This should raise eyebrows ...
256 nodes for 5PB/sec of BW and 100PF ???

pretty much a top 5 machine in top500.org
with 100x fewer systems (or 25x fewer
allowing for 16 vs 64 bit precision).

It would work very well for moderate granularity
computations, like SKA (and AI for which it was
made). Wouldn’t help with AMR likely, but
surrogates may do that.

GPU’s around 2003 evolved to GPGPU’s
through HPC.

Possible further enablers:

1. Are TensorFlow operations sufficient for
HPC?

2. does a more general systolic network
interconnect offer more opportunities?

3. Is mixed floating point precision required?
(cf. posithub.org)

24

PVC - pixel visual core (Google)
Objective: save power for image processing
(and AI) in cameras.

Keep it programmable (Halide subset).

Internal architecture is complex: line buffers
connect stencil processing cores

PVC has IPU’s
Each IPU has

- memory
- 8 STP and 8 LBP
- comms

Each STP has:
● 256 cores
● ALU focus
● neighbor

memory
access

25

Languages and Compilers

26

Persistent Memory
Great opportunities but with
software challenges

In practice, used as RAM or storage
device :(

27

Persistent Memory
Much memory will become persistent, but not SRAM used for caches, registers
etc. Hence PM requires specific cache flush machine instructions.

PM reads currently on-par with RAM, but writes are 10x slower. Hence PM will be
used in conjunction with faster memory for caching.

28

Restartable programs
But transactions require lock ordering and do not compose. Software
Transactional Memory overcomes this, can be used with PM1.

Key challenge 1: automatically transform code for volatile memory data
structures into code that is meaningful with persistent memory. Even for a linked
list, this is not so simple2.
Key challenge 2: If all or most memory in computers is non-volatile - programs
should restart after battery exhaustion (and maybe after failures)

1. Composable Memory Transactions, Tim Harris Simon Marlow Simon Peyton Jones Maurice Herlihy
2. Relayed to me by Intel’s lead of PM software, Andy Rudoff

29

Memory Tiers
Hardware Mechanisms Rule

Probably extremely good software
opportunities

30

Tiers of memory / memory layout
Compiler is targeting systems with complex data in a complex memory layout

- multi dimensional arrays with tiles, slices, alignment, etc.
- storage class memory, RAM, HBM, level 1-3 caches
- cache coherency sometimes for dozens of cores

It is unlikely that hardware memory management solutions do a great job.

31

Memory Tier Opportunities
Array calculations and HBM

● Consider ultra-popular package for array
calculations: NumPy

● NumPy uses Python memory
management with optimized kernels

● When should NumPy arrays be
cached (e.g. placed in HBM)?

● Suggestion (Simon Peyton-Jones): the
garbage collector is best place to make
this decision (in this case Python’s GC)

Compressed data movement

● In scientific problems, precision is lost
only during computation

● Data movement, storage is very costly
○ e.g. new radio telescope needs 200

PB/sec memory bandwidth
○ cost is 10 MW in power

● Major improvement: store and
transport compressed arrays of
adequate, lower precision.
Decompress only during
computation.

● Managing near-core data out of “the
address space” not well supportedJohn Gustafson, week 2 may say more

32

Compiler Challenges LLVM innovation & challenges

MLIR

33

LLVM
Around 2000 LLVM was invented

LLVM is a software virtual machine
separate HW specific aspects from remainder of the compiler

Apple based its C compiler on this CLANG, numerous other languages followed.

in 2010’s abstractions for vector instructions, GPU’s and FPGA’s were embedded
in LLVM. Even CUDA compiler leveraged LLVM.

Interview: Chris Lattner: Compilers, LLVM, Swift, TPU, and ML Accelerators | Artificial Intelligence Podcast,
https://bit.ly/31iFY7o

34

However … language specialization
● Optimizations often remained part of the

compiler above LLVM
● New languages required new

intermediate layers which LLVM didn’t
support

● Much duplication in optimization

● The ML accelerators came with
completely different instruction sets

● Usability of the languages was affected by
this.

● During Apple’s Swift development and
Google’s TensorFlow this came to a
head…….

35

Tensorflow intermediate formats

TensorFlow targets:
- CPU
- GPU
- distributed
- TPU / edge TPU
- training and

inference mode
- edge devices

TF Optimizations:
- Fusion
- Graph pruning
- Graph splitting
- Constant handling
- Array tiling 36

MLIR - Google project
Multi-Level Intermediate Representation Compiler Infrastructure

- similar to LLVM in spirit, addressing recent issues
- dialects with custom instructions (e.g. LLVM dialect, TF dialect)
- flexible definition of SSA intermediate formats
- generically usable polyhedral optimization
- traceability

Hope: eliminate all custom IR’s in the world. Ambitious, but great!

Github: https://github.com/tensorflow/mlir
Wk 8, Dec 4: Albert Cohen, MLIR.

37

Programming in
Mathematics Domains

LLVM innovation & challenges

TensorFlow Complexity

MLIR

38

Machine Learning / Scientific Computing
Important/Shameless Advertisement: Thursdays 14:30 I and Miha Zgubic
run “ML & Physics” seminar in Wilkinson Building.

What is special about Machine Learning and its eco-system?

Answer: extended types! Tensors in the language, tensor-friendly hardware.

● Scientific computing takes this further: tensors + differential / integral
operators. Applied mathematics uses dozens of types.

● Pure mathematics uses hundreds of types (Sheaves, Number fields...)
● Programming languages only mildly helpful.

39

Scientific Computing Problems
Scientific problems often have an extremely short full specification along the
following lines:

- solve a differential equation F(D, v) = 0 for v, given the operator F(D, -)
- let v obey initial and boundary conditions
- select a mesh, discretization and solver to approximate the solution
- here we enter “known programming terrain”

If the programming language is enhanced with types and a calculus for these
mathematical objects, programming becomes much simpler.

Nov 6, Wk 4 - Prof. Paul Kelly, Firedrake .

40

Domain Specific Languages
Very many domain specific languages have been developed:

- for Machine Learning
- for High Performance Computing
- Image Processing

A few are hugely successful: NumPy, TensorFlow, Halide

However:
- most DSLs rely on complex library functions which, e.g. cannot be fused
- many chosen domains are too narrow. E.g. Halide is truly a fantastic image

processing DSL, yet not for noisy, sparse astronomy data
- there are too many DSL’s

41

Halide DSL example
Halide image processing

State of the art in separating computation from
mechanism.

Is the future perhaps something like the following?

Schedule: a function between linear/dependent
types representing:

- data in the computation
- hardware in the computer

Note: various Haskell libraries, notably Accelerate,
have similar expressivity.

42

Suggested approach
Conal Elliott, Paul Kelly, Oleg
Kiselov, and many others.

Challenge 1: CS to design
good systems

Challenge 2: drag domain
specialists along

Mathematical Formulation of Problem
in PL or DSL

Finite
Elements

Neural
Nets

Signal
Processing

data type & hardware specific
optimizations

we’ve lost most
type information
here

currently we
program here

geometric / typed
perspective 100%
lost: bits & bytestarget architecture

currently not widely
available, nor easily
done

automatically
create domain

specific program

avoid duplicated
compiler efforts

types for hybrid HW and
domain specific data

43

Conclusions
Thank you.
Questions

Big changes are under way

Industry driven

Deep CS opportunities

44

