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This seminar is being broadcast live on YouTube.

Find the talk in the channel: https://bit.ly/2BgHY5G
The direct link to the broadcast should be, if all goes smoothly:
https://bit.ly/35LMKX5

Warm welcome to the remote viewers!

Please ask questions in the comments section
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Origin of this seminar series

| worked extensively on HPC infrastructure in industry and more recently in
Cambridge for the SKA telescope.

| and Prof lan Shipsey ran a conference in London about Al for CERN and SKA.

We quickly decided it would be worthwhile to run this seminar.

ML for physics:
e Growth of the field is phenomenal.
e Extremely difficult to follow along.



Today’s lecture - perhaps unusual

However - I'm a computer scientist, technologist and mathematician. | am
not a physicist, and not an ML specialist.

I'll summarize structure and a few aspects of how we look at this field.

All other seven lectures will focus on physics. Some on theoretical
physics, most on experimental physics.

| hope to leave a little time for discussion, and learn from the audience where
this perspective might be improved. Also, I'm happy to answer short
questions as we go along.



Physics and ML

- establish terminology
- attempt at categorizing




Basics of physics and ML

inference: using a trained ML model to create
new computed data from input.

training: using experimental or computed
data to discover & train an ML model of a
physical practice

traditional scientific practice: all aspects of
discovery and physics data handling without
ML methodology

machine learning scientific practice: creating
and using ML models

Identify 4 areas of ML scientific practice
(probably some are missing):

1.

sensor data: process sensor/measured
data to create scientific data

simulation: refine and replace traditional
simulation software

experimental discovery: make
discoveries in experimental data

theoretical discovery: discover and
compute theoretical data:



inference

PhySiCS - ML & SCience training / providing ground truth

traditional scientific practice
machine learning scientific practice

"

replace & improve simulation
< Y P t

big data analysis: e.g.
CERN triggers, transients
in astrophysics

process sensor d&t&*

research & analysis:
e.g. find dark matter

experimental
discovery

simulation data \ experimental data
theoretical

discoveries I
-




Seminar Series - overview

Simulation:
Wk 1 Oct 17: Peter Braam -
ML approaches for scientific
computing

Sensor data & simulation:
Wk 2 Oct 24: Professor
David Rousseau, LAL
Orsay: 'Two computing
challenges for particle
physics: the tracking
challenge and event
simulation with generative
adversarial networks’

Simulation:
Wk 3 Oct 31: Professor
Giles Louppe, Liege, 'Neural
likelihood-free inference’

Experimental discovery:
Wk4 Nov 7: Vesna Lukic,
Hamburg, 'Deep learning
techniques applied to radio
astronomy’



Seminar Series - overview

Theoretical discovery: Experimental discovery:
WKk 5, Nov 14: Professor WK7, Nov 28: Dr Laurence
Sergei Gukov, Caltech, 'A Levasseur, Montréal
nobel prize to neural net?’ '‘Analysis of strong

gravitational lensing data
with machine learning’

Simulation: . _
Wk 6, Nov 21: Dr Peter Theoretical discovery:
Battaglia, DeepMind WK 8, Dep 5: Professor
'Learning structured models Yang-Hui He, London,
of physics’ "Machine learning

mathematical structures’



characterize the fields

ML & SimUIatiOn - categorize ML / HPC

relationship
motivation




What do we want to talk about today?

Simulation/HPC - Very big business since 2000 (~$50B/ year). Large scientific

experiments analyze all data with HPC. In classical physics simulations solving

PDE's are central, but there are others (e.g. MtCarlo). Now pervasive in
industry.

ML - Growing into a huge business (already $60B/year). Focused on a subset
of computational methods found in HPC. Moreover, ML software and
hardware frameworks are maturing faster than HPC. Motto: “could be more

revolutionary than electricity”
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ML and HPC

Geoffrey Fox (2019) c.s. categorized (some)
aspects of the relationship:

MLforHPC:

MLaroundHPC: an ML model becomes
a surrogate for a simulation
MLControl: influence selection of
simulation with surrogates
MLafterHPC: study results of HPC with
ML

MLautotuning: tune HPC with ML
MLrunsHPC: HPC software and
hardware runs (not in Fox’s categories)

HPCforML.:
e HPCrunsML: ML infrastructure for HPC
computations
e SimulationtrainedML: HPC simulations
train ML model to influence experiments
or other simulations

This talk contains examples of orange
aspects.

https://arxiv.org/abs/1902.10810, Learning Everywhere:
Pervasive Machine Learning for Effective High-Performance
Computation

Geoffrey Fox, James A. Glazier, JCS Kadupitiya, Vikram Jadhao,
Minje Kim, Judy Qiu, James P. Sluka, Endre Somogyi, Madhav
Marathe, Abhijin Adiga, Jiangzhuo Chen, Oliver Beckstein,
Shantenu Jha


https://arxiv.org/abs/1902.10810

Motivation

Why MLforHPC?

HPC is older subject. Real limits have been
encountered:

e Some algorithms like adaptive mesh
refinement have seen almost no
performance improvement in 30 years!

e Storage, memory and network
bottlenecks for most problems

e HPCis costly

ML brings completely new methods to
HPC. Software & hardware for ML has
radical new aspects.

Why HPCforML?

HPC has the biggest super-computers.
Possibly can push the limits on ML
computations.

Maybe this is not so different from usual HPC:
simply pushing the limits



Specifically we will look at

(1) Some examples of surrogates (3) Example of ML running HPC

e Structure formation in early Universe e ML hardware landscape

e Plasma Ignition e ML software

e Great variety of opportunities e Benchmark results
(2) Mathematical questions re Acknowledgement: The discovery and results
surrogates: are those of the cited authors. My own interests

concern the generalization of the employed

e ML: depends on data, while true methods.

mechanism may remain unclear

e Simulation: bottom up mathematical
derivation

e Relates to interpretability of some
models



Learning to predict the
cosmological structure
formation

Reference: Siyu He, Yin Li, Yu Feng, Shirley Ho, Siamak
Ravanbakhsh, Wei Chen, and Barnabas P6czos

PNAS July 9, 2019 116 (28) 13825-13832; first published
June 24, 2019 https://doi.org/10.1073/pnas.1821458116

Problem statement: Take initial
distribution of mass & velocity in
(early) universe. Study its
evolution, recognize structure
formation (e.g. galaxies).

Sample: 10,000 simulations

Ground truth: an expensive
simulation - FastPM


https://doi.org/10.1073/pnas.1821458116

Cosmological structure formation: D3M model

- Ground truth for training: Fast-PM
multi particle simulation

- Model: evolve along linear
trajectories (so-called Zeldovich
approximation), followed by a U-net.

- Evaluate: Compare with 2nd order
perturbation theory (2LPT) and
Fast-PM

- Also evaluate: different cosmological
parameters & multi-point correlations

Result: ML model is more accurate, has
much lower computational cost than 2LPT.
Appears robust under parameter changes.

ML is 5x faster than FastPM, more accurate
than 2LPT
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Also included are multi-point
correlation functions for

as

evaluation of the model,
customary in physics
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Suggestions / questions

Is there a different model that would eliminate the ZA approximation

altogether, and solve the equation purely with ML? (Answer is almost
certainly “yes”)

The uNet has ~107 parameters. The (discretized) translation & rotation
group ( (Z/32Z)3 x rotations ) introduces preservation of momentum. A

model that is invariant under this has < 100 parameters left. Can this be
leveraged?



Inertial

Confinement Fusion
(ICF)

- What are ICF, NIF, LLNL

- Ultra large simulations

- Very difficult plasma
physics

Showing Enormous Variety of - transfer learning

ML opportunities in a very
difficult problem




National Ignition Facility @ Lawrence Livermore

Built between 1996 and 2009. Studies What is NIF about;
plasma ignition.

Two pillars in US “weapon stockpile

stewardship program”: Simulations of pellet:
e #1 super computers
e NIF = National Ignition Facility

NIF laser facility: size of 3 soccer fields



https://www.youtube.com/watch?v=yixhyPN0r3g&t=3m41s&end=5m1s
https://www.youtube.com/watch?v=yixhyPN0r3g&t=3m41s&end=5m1s
https://www.youtube.com/watch?v=KOZIx5JUHbc&t=17m50s
https://www.youtube.com/watch?v=KOZIx5JUHbc&t=17m50s

Hohlraum and Pellet

Laser
entrance hole
(LEH)

Hohlraum (10 mm) simulation:
extremely difficult, sometimes
inaccurate

Pellet (1 mm) simulation: also
complicated, but much simpler.



Experimental discovery in simulation data

Profound outcomes: through search in ML
surrogate generated data it was discovered
that - e.g. ovals may be better than spherical
shapes are better than spherical shapes!

ICF group deals with profoundly difficult
differential equations: shock waves,
turbulence, multi-physics. Results can be
fairly inaccurate.

Surrogates have been created: 10’s of 0
Petabytes of simulation training data, months ;
of simulation time.

Surrogates compute in <1% of simulation g LA (P
time.

Zonal flow generation in inertial confinement fusion implosions

J. L. Peterson, K. D. Humbird, J. E. Field, S. T. Brandon, S. H. Langer, R.
C. Nora, B. K. Spears, and P. T. Springer Citation: Physics of Plasmas 180°
24,032702 (2017); doi: 10.1063/1.4977912




Transfer Learning

Improve post-shot (pellet only) simulation.

Replace last layers in neural network.

Extraction of training data is elaborate
combination of ML, experimental and
simulation work (novel use of
auto-encoders, | think).

Simulation Inputs Experiment Inputs

Simulation Outputs Experiment Outputs

Figure 6.1: To transfer learn from simulations to experiments, the first three layers of
the simulation-based network are frozen, and the remaining two layers are available
for retraining with the experimental data.

Ref: PhD thesis: MACHINE LEARNING GUIDED
DISCOVERY AND DESIGN FOR INERTIAL CONFINEMENT
FUSION

KELLI DENISE HUMBIRD, Texas A&M 2019



Mathematical
Perspective

- what operators are ML
models?

- limiting and scale

mostly questions behaviour




What models? What operators?

Model Choice

Challenge: formulate a systematic way to
find a surrogate for a class of simulations

Systematic approaches do exist to transition
differential equations to e.g. finite element
models.

The discovery of most ML models appears to
require good intuition but is experimental.

What are ML surrogates as solution
operators?

In simulation usually the mathematical origin
of the computation is known: for example,
approximate evolution of a differential
equation.

Trained ML surrogates map inputs to outputs.

Question: What kind of operators are we
dealing with?



Scale & limits of networks

Scale

Convolutional Neural Network inputs can
represent initial conditions in space. The
scale at which the initial conditions are
sampled must be respected by the network.

E.g. in cosmological structure formation, the
network cannot predict sub-cell evolution.

However, newer numerical methods like
adaptive mesh refinement (AMR) adjust
automatically.

Challenge: Create scale adaptive ML
networks

Limits

Questions: As ML network gains width and
depth do ML surrogates approximate the
mathematical solutions? Are there phase
transitions? What are the continuous limits?

Is there a relationship with study of
over-parametrized networks? Reminiscent of
limits (renormalization) in statistical physics,
e.g. of Ising model

Ref: Sensitivity and Generalization in Neural
Networks: an Empirical Study, Roman Novak,
Yasaman Bahri, Daniel A. Abolafia, Jeffrey Pennington,

lascha Sohl-Dickstein



https://arxiv.org/search/stat?searchtype=author&query=Novak%2C+R
https://arxiv.org/search/stat?searchtype=author&query=Bahri%2C+Y
https://arxiv.org/search/stat?searchtype=author&query=Abolafia%2C+D+A
https://arxiv.org/search/stat?searchtype=author&query=Pennington%2C+J
https://arxiv.org/search/stat?searchtype=author&query=Sohl-Dickstein%2C+J

Algebra of neural networks

Evolution of physical phenomena are
generally composable: the operators
transitioning between [T1, T2] and [T2, T3] can
be composed to get the evolution from [T1,
T3]

Classically this true for flows of differential
equations, it also holds in QFTs.

Should be true for ML surrogates.

In the case of structure formation this would
demonstrate that the effect of the
composition of two u-Nets approximates that
of a single one. Notice that the depth of ML
network doubles!

Question: What is the algebraic & geometric
structure on the space of neural networks
and for what is such a structure useful?



Run some HPC benchmarks

MLrunSHPC using TensorFlow

very encouraging
Reference: not “production ready”

TensorFlow Doing HPC, Steven W. D. Chien, Stefano
Markidis, Vyacheslav Olshevsky, Yaroslav Bulatov, Erwin
Laure, Jeffrey S. Vetter




Run HPC benchmarks on Tensorflow: summary

Evaluated & good outcome:

e Programmability in TF is very good -
short clear programs

e Performance of RDMA transport is very
good

e Scaling number of GPUs is good

Evaluated - needs fixing:

e Python itself too slow for e.g. slicing
e Some locking on queues too coarse

Next steps:

Achieve comparison with true
benchmarks

Scale the number of nodes
Leverage TF specific hardware



TensorFlow implementation &
networks

TF has a data flow graph model, deployable on many
different kinds of distributed hardware devices

TensorFlow Application

Tools (tfdbg, Timeline)

APIs (Python, C, C++, Java, Haskell, Go, Rust)

Distributed Runtime (C++)

Network File Systems Device Layer (GPU, CPU)

Kernel Implementations

gRPC | | RDMA | | MPI | | POSIX | | gCloud || AWS (MatMul, Conv, ...)

\ deemed very important for HPC
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Distributed Tiled Matrix Multiplication

Matmul

Matmul

FIFO Queue

Reducer

[ {1 | | F—1T9{Accumulate|

“ Tiles Answer

TF implementation of distributed matrix multiplication: effective and high performance.

Matrices are larger than single node memory. Workers and reducer run on different systems,
and exploit different numbers of GPU’s. Performance scaling on different clusters is good.



More complicated algorithms: easy to write

Conjugate Gradient (CG) & Fast Fourier
Transform (FFT) involve more complicated

programming:

e (G Reducer must wait for all results
from workers. TF queues implement
this.

e Tukey-Cooley FFT requires slicing of
data. Python cannot do that fast.

Worker

wl [ ]

/&

Worker

Reducer

Values to reduce

| | | | |—->|Dequeue all

Fill queue




e Domain specific chips for
ML are emerging (dozens of

startups!)
MLrunSH PC 11(:)x j:150x higher HW

capabilities

TensorFlow.org. Publications about TPU's.




cards & clusters

TPU - PCI ML accelerators

TPU v3 PCl accelerator card

TPU v3 POD (“cluster”)

36



Example of ML hardware: TPU chips

TPU chips have 4 systolic arrays MXU (matrix multiply
unit) reducing memory accesses by ~100x:

-

Register

ALU

!
.

l Partial Sums

Pass data between ~100K ALU’s. Small processing units,

using a global clock, no registers. 4%_% %
o Done

Only for TensorFlow ops.
~100T Ops/cycle (limited precision) Matrix Multiplier Unit (MXU) of TPU

37




Neural Network Model (TPU Estimator)
TensorFlow Client

grpc over =

System Organization

Send TF graph as a whole to a TF node

Send individual TF operations
with their data to the TPU accelerator.

This includes instructions and data. The

TPU does not fetch instructions like a CPU grpe over PCI




TPU v3.0 specs

TPU 3.0 card TPU 3.0 node TPU pod
#TPU’s 1 card, 4 chips, 16 MXU 4 cards 1024 cards, 256 nodes
mem BW 5 TB/sec 20 TB/sec 5 PB/sec
flops / sec (*) | 100 TF/sec 400 TF/sec 100 PF/sec

Operations per clock cycle

CPU 10’s (cores)

CPU vectorized 1000 (core x vector length)
GPU 10K ‘s

TPU 128K (TPU v1)

* flops are of various precisions
39



This should raise eyebrows...

256 nodes for 5PB/sec of BW and 100PF 2?? Possible further enablers:

pretty much a top 5 machine in top500.org 1. Are TensorFlow operations sufficient for
with 100x fewer systems (or 25x fewer HPC?

allowing for 16 vs 64 bit precision). 2. does a more general systolic network

interconnect offer more opportunities?
Is mixed floating point precision
required? (cf. posithub.org)

It would work very well for moderate 3.
granularity computations, like SKA (and Al for

which it was made). Wouldn't help with AMR

likely, but surrogates may do that.

GPU's around 2003 evolved to GPGPU's
through HPC.

40



Conclusions
Thank you
Questions

This is a fast moving
emerging area
Profound practical
applications

Likely deep source for

theory

Relationship between
physical laws and ML may
be easier to understand
than “real world” ML




