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Origin of this seminar series
I worked extensively on HPC infrastructure in industry and more recently in 
Cambridge for the SKA telescope.

I and Prof Ian Shipsey ran a conference in London about AI for CERN and SKA. 

We quickly decided it would be worthwhile to run this seminar. 

ML for physics: 
● Growth of the field is phenomenal.

● Extremely difficult to follow along. 



Today’s lecture - perhaps unusual
However - I’m a computer scientist, technologist and mathematician.  I am 
not a physicist, and not an ML specialist.  

I’ll summarize structure and a few aspects of how we look at this field.

All other seven lectures will focus on physics. Some on theoretical 
physics, most on experimental physics.

I hope to leave a little time for discussion, and learn from the audience where 
this perspective might be improved.  Also, I’m happy to answer short 
questions as we go along.



Physics and ML - establish terminology
- attempt at categorizing



Basics of physics and ML
inference: using a trained ML model to create 
new computed data from input.

training: using experimental or computed 
data to discover & train an ML model of a 
physical practice

traditional scientific practice: all aspects of 
discovery and physics data handling without 
ML methodology

machine learning scientific practice: creating 
and using ML models

Identify 4 areas of ML scientific practice 
(probably some are missing):

1. sensor data: process sensor/measured 
data to create scientific data

2. simulation: refine and replace traditional 
simulation software

3. experimental discovery: make 
discoveries in experimental data

4. theoretical discovery: discover and 
compute theoretical data: 



simulation data experimental data

Physics - ML & Science
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science, or 

discovery data

low-fidelity,
conceptual

&
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mathematical
simulation
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mathematical 

laws

sensor data
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big data analysis: e.g.
CERN triggers, transients 
in astrophysics

research & analysis: 
e.g. find dark matter

replace & improve simulation

 process sensor data

inference
training / providing ground truth

traditional scientific practice
machine learning scientific practice

theoretical 
discoveries

experimental
discovery



Seminar Series - overview
Simulation: 

Wk 1 Oct 17: Peter Braam - 
ML approaches for scientific 
computing

Sensor data & simulation: 
Wk 2 Oct 24: Professor 
David Rousseau, LAL 
Orsay:   'Two computing 
challenges for particle 
physics: the tracking 
challenge and event 
simulation with generative 
adversarial networks’

Simulation:  
Wk 3 Oct 31: Professor 
Giles Louppe, Liege, 'Neural 
likelihood-free inference’

Experimental discovery:
Wk4 Nov 7:  Vesna Lukic, 
Hamburg, 'Deep learning 
techniques applied to radio 
astronomy’



Seminar Series - overview
Theoretical discovery:

Wk 5, Nov 14: Professor 
Sergei Gukov, Caltech,  'A 
nobel prize to neural net?’ 

Simulation:

Wk 6, Nov 21: Dr Peter 
Battaglia, DeepMind 
'Learning structured models 
of physics’ 

Experimental discovery: 
Wk7, Nov 28: Dr Laurence 
Levasseur, Montréal 
'Analysis of strong 
gravitational lensing data 
with machine learning’ 

Theoretical discovery: 

Wk 8, Dec 5: Professor 
Yang-Hui He, London, 
‘'Machine learning 
mathematical structures’



ML & Simulation
- characterize the fields
- categorize ML / HPC 

relationship
- motivation



What do we want to talk about today?
Simulation/HPC - Very big business since 2000 (~$50B/ year). Large scientific 
experiments analyze all data with HPC.  In classical physics simulations solving 
PDE’s are central, but there are others (e.g. MtCarlo).  Now pervasive in 
industry.

ML - Growing into a huge business (already $60B/year).  Focused on a subset 
of computational methods found in HPC.   Moreover, ML software and 

hardware frameworks are maturing faster than HPC. Motto: “could be more 
revolutionary than electricity”
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ML and HPC
Geoffrey Fox (2019) c.s. categorized (some) 
aspects of the relationship:

MLforHPC:
● MLaroundHPC: an ML model becomes 

a surrogate for a simulation
● MLControl: influence selection of 

simulation with surrogates
● MLafterHPC: study results of HPC with 

ML
● MLautotuning: tune HPC with ML
● MLrunsHPC: HPC software and 

hardware runs (not in Fox’s categories)

 

HPCforML: 
● HPCrunsML: ML infrastructure for HPC 

computations
● SimulationtrainedML: HPC simulations 

train ML model to influence experiments 
or other simulations

This talk contains examples of orange 
aspects.

https://arxiv.org/abs/1902.10810, Learning Everywhere: 
Pervasive Machine Learning for Effective High-Performance 
Computation

Geoffrey Fox, James A. Glazier, JCS Kadupitiya, Vikram Jadhao, 
Minje Kim, Judy Qiu, James P. Sluka, Endre Somogyi, Madhav 
Marathe, Abhijin Adiga, Jiangzhuo Chen, Oliver Beckstein, 
Shantenu Jha

https://arxiv.org/abs/1902.10810


Motivation
Why MLforHPC?

HPC is older subject.  Real limits have been 
encountered:

● Some algorithms like adaptive mesh 
refinement have seen almost no 
performance improvement in 30 years!

● Storage, memory and network 
bottlenecks for most problems

● HPC is costly

ML brings completely new methods to 
HPC.   Software & hardware for ML has 
radical new aspects.

Why HPCforML?

HPC has the biggest super-computers.  
Possibly can push the limits on ML 
computations.

Maybe this is not so different from usual HPC: 
simply pushing the limits



Specifically we will look at
(1) Some examples of surrogates

● Structure formation in early Universe
● Plasma Ignition
● Great variety of opportunities

(2)   Mathematical questions re 
surrogates:

● ML: depends on data, while true 
mechanism may remain unclear

● Simulation: bottom up mathematical 
derivation

● Relates to interpretability of some 
models

(3) Example of ML running HPC
● ML hardware landscape
● ML software
● Benchmark results

Acknowledgement: The discovery and results 
are those of the cited authors.   My own interests 
concern the generalization of the employed 
methods.



Learning to predict the 
cosmological structure 
formation
Reference: Siyu He, Yin Li, Yu Feng, Shirley Ho, Siamak 
Ravanbakhsh, Wei Chen, and Barnabás Póczos

PNAS July 9, 2019 116 (28) 13825-13832; first published 
June 24, 2019 https://doi.org/10.1073/pnas.1821458116

Problem statement: Take initial 
distribution of mass & velocity in 
(early) universe.  Study its 
evolution, recognize structure 
formation (e.g. galaxies).  

Sample: 10,000 simulations  

Ground truth: an expensive 
simulation - FastPM 

https://doi.org/10.1073/pnas.1821458116


Cosmological structure formation: D3M model

- Ground truth for training: Fast-PM 
multi particle simulation

- Model: evolve along linear 
trajectories (so-called Zeldovich 
approximation), followed by a U-net.

- Evaluate: Compare with 2nd order 
perturbation theory (2LPT) and 
Fast-PM

- Also evaluate: different cosmological 
parameters & multi-point correlations

Result: ML model is more accurate, has 
much lower computational cost than 2LPT.  
Appears robust under parameter changes.

ML is 5x faster than FastPM, more accurate 
than 2LPT



Discretize 200*109 ly3 of early 
universe into 323 voxel cubes with 
N-body particle configurations

Displacement field F is initial 
velocity vector at each grid point.

Input to D3M model = U-net 
applied to Zeldovich Approximation 
displacement field

Loss is |FFastPM - FD3M|mean square

Setup



Evaluation of accuracy of model

mass

displ.

error

Also included are multi-point 
correlation functions for 
evaluation of the model, as 
customary in physics



Suggestions / questions
- Is there a different model that would eliminate the ZA approximation 

altogether, and solve the equation purely with ML?  (Answer is almost 
certainly “yes”)

- The uNet has ~107 parameters.  The (discretized) translation & rotation 
group ( (Z/32Z)3 x rotations ) introduces preservation of momentum.  A 
model that is invariant under this has < 100 parameters left.  Can this be 
leveraged?



Inertial 
Confinement Fusion 
(ICF)
Showing Enormous Variety of 

ML opportunities in a very 
difficult problem

- What are ICF, NIF, LLNL
- Ultra large simulations
- Very difficult plasma 

physics
- transfer learning



National Ignition Facility @ Lawrence Livermore
Built between 1996 and 2009.   Studies 
plasma ignition. 

Two pillars in US “weapon stockpile 
stewardship program”:

● #1 super computers
● NIF = National Ignition Facility

Absolutely world leading facility.

What is NIF about:  
https://www.youtube.com/watch?v=yixhyPN0r
3g&t=3m41s&end=5m1s

Simulations of pellet: 
https://www.youtube.com/watch?v=KOZIx5JU
Hbc&t=17m50s

NIF laser facility: size of 3 soccer fields

https://www.youtube.com/watch?v=yixhyPN0r3g&t=3m41s&end=5m1s
https://www.youtube.com/watch?v=yixhyPN0r3g&t=3m41s&end=5m1s
https://www.youtube.com/watch?v=KOZIx5JUHbc&t=17m50s
https://www.youtube.com/watch?v=KOZIx5JUHbc&t=17m50s


Hohlraum and Pellet
Hohlraum (10 mm) simulation: 
extremely difficult, sometimes 
inaccurate

Pellet (1 mm) simulation: also 
complicated, but much simpler.



Experimental discovery in simulation data
ICF group deals with profoundly difficult 
differential equations: shock waves, 
turbulence, multi-physics.  Results can be 
fairly inaccurate.

Surrogates have been created: 10’s of 
Petabytes of simulation training data, months 
of simulation time. 

Surrogates compute in <1% of simulation 
time.

Profound outcomes: through search in ML 
surrogate generated data it was discovered 
that  - e.g. ovals may be better than spherical 
shapes are better than spherical shapes!

Zonal flow generation in inertial confinement fusion implosions
J. L. Peterson, K. D. Humbird, J. E. Field, S. T. Brandon, S. H. Langer, R. 
C. Nora, B. K. Spears, and P. T. Springer Citation: Physics of Plasmas 
24, 032702 (2017); doi: 10.1063/1.4977912



Transfer Learning

Improve post-shot (pellet only) simulation. 

Replace last layers in neural network.

Extraction of training data is elaborate 
combination of ML, experimental and 
simulation work (novel use of 
auto-encoders, I think).

Ref: PhD thesis: MACHINE LEARNING GUIDED 
DISCOVERY AND DESIGN FOR INERTIAL CONFINEMENT 
FUSION

KELLI DENISE HUMBIRD, Texas A&M 2019



Mathematical 
Perspective
mostly questions

- what operators are ML 
models?

- limiting and scale 
behaviour



What models?   What operators?
Model Choice

Challenge: formulate a systematic way to 
find a surrogate for a class of simulations

Systematic approaches do exist to transition 
differential equations to e.g. finite element 
models.

The discovery of most ML models appears to 
require good intuition but is experimental.

What are ML surrogates as solution 
operators?

In simulation usually the mathematical origin 
of the computation is known: for example, 
approximate evolution of a differential 
equation.

Trained ML surrogates map inputs to outputs.

Question: What kind of operators are we 
dealing with?



Scale & limits of networks
Scale

Convolutional Neural Network inputs can 
represent initial conditions in space.  The 
scale at which the initial conditions are 
sampled must be respected by the network.

E.g. in cosmological structure formation, the 
network cannot predict sub-cell evolution.

However, newer numerical methods like 
adaptive mesh refinement (AMR) adjust 
automatically. 

Challenge: Create scale adaptive ML 
networks

Limits

Questions: As ML network gains width and 
depth do ML surrogates approximate the 
mathematical solutions? Are there phase 
transitions? What are the continuous limits?

Is there a relationship with study of 
over-parametrized networks? Reminiscent of 
limits (renormalization) in statistical physics, 
e.g. of Ising model

Ref: Sensitivity and Generalization in Neural 
Networks: an Empirical Study, Roman Novak, 
Yasaman Bahri, Daniel A. Abolafia, Jeffrey Pennington, 
Jascha Sohl-Dickstein

https://arxiv.org/search/stat?searchtype=author&query=Novak%2C+R
https://arxiv.org/search/stat?searchtype=author&query=Bahri%2C+Y
https://arxiv.org/search/stat?searchtype=author&query=Abolafia%2C+D+A
https://arxiv.org/search/stat?searchtype=author&query=Pennington%2C+J
https://arxiv.org/search/stat?searchtype=author&query=Sohl-Dickstein%2C+J


Algebra of neural networks
Evolution of physical phenomena are 
generally composable: the operators 
transitioning between [T1, T2] and [T2, T3] can 
be composed to get the evolution from [T1, 
T3].  

Classically this true for flows of differential 
equations, it also holds in QFTs.

Should be true for ML surrogates.

In the case of structure formation this would 
demonstrate that the effect of the 
composition of two u-Nets approximates that 
of a single one.  Notice that the depth of ML 
network doubles!

Question: What is the algebraic & geometric 
structure on the space of neural networks 
and for what is such a structure useful?



MLrunsHPC
Reference: 

TensorFlow Doing HPC, Steven W. D. Chien, Stefano 
Markidis, Vyacheslav Olshevsky, Yaroslav Bulatov, Erwin 
Laure, Jeffrey S. Vetter

● Run some HPC benchmarks 
using TensorFlow

● very encouraging
● not “production ready”



Run HPC benchmarks on Tensorflow: summary
Evaluated & good outcome:

● Programmability in TF is very good - 
short clear programs

● Performance of RDMA transport is very 
good

● Scaling number of GPUs is good

Evaluated - needs fixing:

● Python itself too slow for e.g. slicing
● Some locking on queues too coarse

Next steps:

● Achieve comparison with true 
benchmarks

● Scale the number of nodes
● Leverage TF specific hardware



TensorFlow implementation & 
networks
TF has a data flow graph model, deployable on many 
different kinds of distributed hardware devices

deemed very important for HPC RDMA works extremely well



Distributed Tiled Matrix Multiplication

TF implementation of distributed matrix multiplication: effective and high performance.

Matrices are larger than single node memory.   Workers and reducer run on different systems, 
and exploit different numbers of GPU’s.   Performance scaling on different clusters is good.  



More complicated algorithms: easy to write
Conjugate Gradient (CG) & Fast Fourier 
Transform (FFT) involve more complicated 
programming:

● CG Reducer must wait for all results 
from workers.  TF queues implement 
this.

● Tukey-Cooley FFT requires slicing of 
data.  Python cannot do that fast.



MLrunsHPC
TensorFlow.org.  Publications about TPU’s. 

● Domain specific chips for 
ML are emerging (dozens of 
startups!)

● 10x - 100x higher HW 
capabilities



TPU - PCI ML accelerators: cards & clusters

36

TPU v3 POD (“cluster”)

TPU v3 PCI accelerator card



Example of ML hardware: TPU chips
TPU chips have 4 systolic arrays MXU (matrix multiply 
unit) reducing memory accesses by ~100x: 

Pass data between ~100K ALU’s.  Small processing units, 
using a global clock, no registers.  

Only for TensorFlow ops. 
~100T Ops/cycle (limited precision) 37



System Organization
Send TF graph as a whole to a TF node

Send individual TF operations
with their data to the TPU accelerator.  

This includes instructions and data. The
TPU does not fetch instructions like a CPU

38

grpc over PCI

grpc over TCP/IP

storage



TPU v3.0 specs

39

TPU 3.0 card TPU 3.0 node TPU pod

#TPU’s 1 card, 4 chips, 16 MXU 4 cards 1024 cards, 256 nodes

mem BW 5 TB/sec 20 TB/sec 5 PB/sec

flops / sec (*) 100 TF/sec 400 TF/sec 100 PF/sec

Operations per clock cycle

CPU 10’s (cores)
CPU vectorized 1000 (core x vector length)
GPU 10K ‘s
TPU 128K (TPU v1)

* flops are of various precisions



This should raise eyebrows ...
256 nodes for 5PB/sec of BW and 100PF ??? 

pretty much a top 5 machine in top500.org 
with 100x fewer systems (or 25x fewer 
allowing for 16 vs 64 bit precision).

It would work very well for moderate 
granularity computations, like SKA (and AI for 
which it was made).  Wouldn’t help with AMR 
likely, but surrogates may do that.

GPU’s around 2003 evolved to GPGPU’s 
through HPC.

Possible further enablers:

1. Are TensorFlow operations sufficient for 
HPC?

2. does a more general systolic network 
interconnect offer more opportunities?

3. Is mixed floating point precision 
required? (cf. posithub.org)

40



Conclusions
Thank you
Questions

- This is a fast moving 
emerging area

- Profound practical 
applications

- Likely deep source for 
theory

- Relationship between 
physical laws and ML may 
be easier to understand 
than “real world” ML


