
This seminar is being broadcast live on YouTube.

Find the talk in the channel: https://bit.ly/2BgHY5G
The direct link to the broadcast should be, if all goes smoothly:
https://bit.ly/35LMKX5

Warm welcome to the remote viewers!

Please ask questions in the comments section

ML and Scientific Computing
Peter Braam

peter@braam.io

me

1980 20021997 2013

math physics @oxford (gauge theory, CFT)

distributed systems cs @cmu

@6 startups & jobs @3 acquirers - Lustre

SKA @cambridge

work with 100’s of largest compute centers and many
major system & CPU/GPU vendors

 @oxford

2018

Origin of this seminar series
I worked extensively on HPC infrastructure in industry and more recently in
Cambridge for the SKA telescope.

I and Prof Ian Shipsey ran a conference in London about AI for CERN and SKA.

We quickly decided it would be worthwhile to run this seminar.

ML for physics:
● Growth of the field is phenomenal.

● Extremely difficult to follow along.

Today’s lecture - perhaps unusual
However - I’m a computer scientist, technologist and mathematician. I am
not a physicist, and not an ML specialist.

I’ll summarize structure and a few aspects of how we look at this field.

All other seven lectures will focus on physics. Some on theoretical
physics, most on experimental physics.

I hope to leave a little time for discussion, and learn from the audience where
this perspective might be improved. Also, I’m happy to answer short
questions as we go along.

Physics and ML - establish terminology
- attempt at categorizing

Basics of physics and ML
inference: using a trained ML model to create
new computed data from input.

training: using experimental or computed
data to discover & train an ML model of a
physical practice

traditional scientific practice: all aspects of
discovery and physics data handling without
ML methodology

machine learning scientific practice: creating
and using ML models

Identify 4 areas of ML scientific practice
(probably some are missing):

1. sensor data: process sensor/measured
data to create scientific data

2. simulation: refine and replace traditional
simulation software

3. experimental discovery: make
discoveries in experimental data

4. theoretical discovery: discover and
compute theoretical data:

simulation data experimental data

Physics - ML & Science

create sensor,
science, or

discovery data

low-fidelity,
conceptual

&
high fidelity

mathematical
simulation

physical &
mathematical

laws

sensor data

science data

discoveries

big data analysis: e.g.
CERN triggers, transients
in astrophysics

research & analysis:
e.g. find dark matter

replace & improve simulation

 process sensor data

inference
training / providing ground truth

traditional scientific practice
machine learning scientific practice

theoretical
discoveries

experimental
discovery

Seminar Series - overview
Simulation:

Wk 1 Oct 17: Peter Braam -
ML approaches for scientific
computing

Sensor data & simulation:
Wk 2 Oct 24: Professor
David Rousseau, LAL
Orsay: 'Two computing
challenges for particle
physics: the tracking
challenge and event
simulation with generative
adversarial networks’

Simulation:
Wk 3 Oct 31: Professor
Giles Louppe, Liege, 'Neural
likelihood-free inference’

Experimental discovery:
Wk4 Nov 7: Vesna Lukic,
Hamburg, 'Deep learning
techniques applied to radio
astronomy’

Seminar Series - overview
Theoretical discovery:

Wk 5, Nov 14: Professor
Sergei Gukov, Caltech, 'A
nobel prize to neural net?’

Simulation:

Wk 6, Nov 21: Dr Peter
Battaglia, DeepMind
'Learning structured models
of physics’

Experimental discovery:
Wk7, Nov 28: Dr Laurence
Levasseur, Montréal
'Analysis of strong
gravitational lensing data
with machine learning’

Theoretical discovery:

Wk 8, Dec 5: Professor
Yang-Hui He, London,
‘'Machine learning
mathematical structures’

ML & Simulation
- characterize the fields
- categorize ML / HPC

relationship
- motivation

What do we want to talk about today?
Simulation/HPC - Very big business since 2000 (~$50B/ year). Large scientific
experiments analyze all data with HPC. In classical physics simulations solving
PDE’s are central, but there are others (e.g. MtCarlo). Now pervasive in
industry.

ML - Growing into a huge business (already $60B/year). Focused on a subset
of computational methods found in HPC. Moreover, ML software and

hardware frameworks are maturing faster than HPC. Motto: “could be more
revolutionary than electricity”

12

ML and HPC
Geoffrey Fox (2019) c.s. categorized (some)
aspects of the relationship:

MLforHPC:
● MLaroundHPC: an ML model becomes

a surrogate for a simulation
● MLControl: influence selection of

simulation with surrogates
● MLafterHPC: study results of HPC with

ML
● MLautotuning: tune HPC with ML
● MLrunsHPC: HPC software and

hardware runs (not in Fox’s categories)

HPCforML:
● HPCrunsML: ML infrastructure for HPC

computations
● SimulationtrainedML: HPC simulations

train ML model to influence experiments
or other simulations

This talk contains examples of orange
aspects.

https://arxiv.org/abs/1902.10810, Learning Everywhere:
Pervasive Machine Learning for Effective High-Performance
Computation

Geoffrey Fox, James A. Glazier, JCS Kadupitiya, Vikram Jadhao,
Minje Kim, Judy Qiu, James P. Sluka, Endre Somogyi, Madhav
Marathe, Abhijin Adiga, Jiangzhuo Chen, Oliver Beckstein,
Shantenu Jha

https://arxiv.org/abs/1902.10810

Motivation
Why MLforHPC?

HPC is older subject. Real limits have been
encountered:

● Some algorithms like adaptive mesh
refinement have seen almost no
performance improvement in 30 years!

● Storage, memory and network
bottlenecks for most problems

● HPC is costly

ML brings completely new methods to
HPC. Software & hardware for ML has
radical new aspects.

Why HPCforML?

HPC has the biggest super-computers.
Possibly can push the limits on ML
computations.

Maybe this is not so different from usual HPC:
simply pushing the limits

Specifically we will look at
(1) Some examples of surrogates

● Structure formation in early Universe
● Plasma Ignition
● Great variety of opportunities

(2) Mathematical questions re
surrogates:

● ML: depends on data, while true
mechanism may remain unclear

● Simulation: bottom up mathematical
derivation

● Relates to interpretability of some
models

(3) Example of ML running HPC
● ML hardware landscape
● ML software
● Benchmark results

Acknowledgement: The discovery and results
are those of the cited authors. My own interests
concern the generalization of the employed
methods.

Learning to predict the
cosmological structure
formation
Reference: Siyu He, Yin Li, Yu Feng, Shirley Ho, Siamak
Ravanbakhsh, Wei Chen, and Barnabás Póczos

PNAS July 9, 2019 116 (28) 13825-13832; first published
June 24, 2019 https://doi.org/10.1073/pnas.1821458116

Problem statement: Take initial
distribution of mass & velocity in
(early) universe. Study its
evolution, recognize structure
formation (e.g. galaxies).

Sample: 10,000 simulations

Ground truth: an expensive
simulation - FastPM

https://doi.org/10.1073/pnas.1821458116

Cosmological structure formation: D3M model

- Ground truth for training: Fast-PM
multi particle simulation

- Model: evolve along linear
trajectories (so-called Zeldovich
approximation), followed by a U-net.

- Evaluate: Compare with 2nd order
perturbation theory (2LPT) and
Fast-PM

- Also evaluate: different cosmological
parameters & multi-point correlations

Result: ML model is more accurate, has
much lower computational cost than 2LPT.
Appears robust under parameter changes.

ML is 5x faster than FastPM, more accurate
than 2LPT

Discretize 200*109 ly3 of early
universe into 323 voxel cubes with
N-body particle configurations

Displacement field F is initial
velocity vector at each grid point.

Input to D3M model = U-net
applied to Zeldovich Approximation
displacement field

Loss is |FFastPM - FD3M|mean square

Setup

Evaluation of accuracy of model

mass

displ.

error

Also included are multi-point
correlation functions for
evaluation of the model, as
customary in physics

Suggestions / questions
- Is there a different model that would eliminate the ZA approximation

altogether, and solve the equation purely with ML? (Answer is almost
certainly “yes”)

- The uNet has ~107 parameters. The (discretized) translation & rotation
group ((Z/32Z)3 x rotations) introduces preservation of momentum. A
model that is invariant under this has < 100 parameters left. Can this be
leveraged?

Inertial
Confinement Fusion
(ICF)
Showing Enormous Variety of

ML opportunities in a very
difficult problem

- What are ICF, NIF, LLNL
- Ultra large simulations
- Very difficult plasma

physics
- transfer learning

National Ignition Facility @ Lawrence Livermore
Built between 1996 and 2009. Studies
plasma ignition.

Two pillars in US “weapon stockpile
stewardship program”:

● #1 super computers
● NIF = National Ignition Facility

Absolutely world leading facility.

What is NIF about:
https://www.youtube.com/watch?v=yixhyPN0r
3g&t=3m41s&end=5m1s

Simulations of pellet:
https://www.youtube.com/watch?v=KOZIx5JU
Hbc&t=17m50s

NIF laser facility: size of 3 soccer fields

https://www.youtube.com/watch?v=yixhyPN0r3g&t=3m41s&end=5m1s
https://www.youtube.com/watch?v=yixhyPN0r3g&t=3m41s&end=5m1s
https://www.youtube.com/watch?v=KOZIx5JUHbc&t=17m50s
https://www.youtube.com/watch?v=KOZIx5JUHbc&t=17m50s

Hohlraum and Pellet
Hohlraum (10 mm) simulation:
extremely difficult, sometimes
inaccurate

Pellet (1 mm) simulation: also
complicated, but much simpler.

Experimental discovery in simulation data
ICF group deals with profoundly difficult
differential equations: shock waves,
turbulence, multi-physics. Results can be
fairly inaccurate.

Surrogates have been created: 10’s of
Petabytes of simulation training data, months
of simulation time.

Surrogates compute in <1% of simulation
time.

Profound outcomes: through search in ML
surrogate generated data it was discovered
that - e.g. ovals may be better than spherical
shapes are better than spherical shapes!

Zonal flow generation in inertial confinement fusion implosions
J. L. Peterson, K. D. Humbird, J. E. Field, S. T. Brandon, S. H. Langer, R.
C. Nora, B. K. Spears, and P. T. Springer Citation: Physics of Plasmas
24, 032702 (2017); doi: 10.1063/1.4977912

Transfer Learning

Improve post-shot (pellet only) simulation.

Replace last layers in neural network.

Extraction of training data is elaborate
combination of ML, experimental and
simulation work (novel use of
auto-encoders, I think).

Ref: PhD thesis: MACHINE LEARNING GUIDED
DISCOVERY AND DESIGN FOR INERTIAL CONFINEMENT
FUSION

KELLI DENISE HUMBIRD, Texas A&M 2019

Mathematical
Perspective
mostly questions

- what operators are ML
models?

- limiting and scale
behaviour

What models? What operators?
Model Choice

Challenge: formulate a systematic way to
find a surrogate for a class of simulations

Systematic approaches do exist to transition
differential equations to e.g. finite element
models.

The discovery of most ML models appears to
require good intuition but is experimental.

What are ML surrogates as solution
operators?

In simulation usually the mathematical origin
of the computation is known: for example,
approximate evolution of a differential
equation.

Trained ML surrogates map inputs to outputs.

Question: What kind of operators are we
dealing with?

Scale & limits of networks
Scale

Convolutional Neural Network inputs can
represent initial conditions in space. The
scale at which the initial conditions are
sampled must be respected by the network.

E.g. in cosmological structure formation, the
network cannot predict sub-cell evolution.

However, newer numerical methods like
adaptive mesh refinement (AMR) adjust
automatically.

Challenge: Create scale adaptive ML
networks

Limits

Questions: As ML network gains width and
depth do ML surrogates approximate the
mathematical solutions? Are there phase
transitions? What are the continuous limits?

Is there a relationship with study of
over-parametrized networks? Reminiscent of
limits (renormalization) in statistical physics,
e.g. of Ising model

Ref: Sensitivity and Generalization in Neural
Networks: an Empirical Study, Roman Novak,
Yasaman Bahri, Daniel A. Abolafia, Jeffrey Pennington,
Jascha Sohl-Dickstein

https://arxiv.org/search/stat?searchtype=author&query=Novak%2C+R
https://arxiv.org/search/stat?searchtype=author&query=Bahri%2C+Y
https://arxiv.org/search/stat?searchtype=author&query=Abolafia%2C+D+A
https://arxiv.org/search/stat?searchtype=author&query=Pennington%2C+J
https://arxiv.org/search/stat?searchtype=author&query=Sohl-Dickstein%2C+J

Algebra of neural networks
Evolution of physical phenomena are
generally composable: the operators
transitioning between [T1, T2] and [T2, T3] can
be composed to get the evolution from [T1,
T3].

Classically this true for flows of differential
equations, it also holds in QFTs.

Should be true for ML surrogates.

In the case of structure formation this would
demonstrate that the effect of the
composition of two u-Nets approximates that
of a single one. Notice that the depth of ML
network doubles!

Question: What is the algebraic & geometric
structure on the space of neural networks
and for what is such a structure useful?

MLrunsHPC
Reference:

TensorFlow Doing HPC, Steven W. D. Chien, Stefano
Markidis, Vyacheslav Olshevsky, Yaroslav Bulatov, Erwin
Laure, Jeffrey S. Vetter

● Run some HPC benchmarks
using TensorFlow

● very encouraging
● not “production ready”

Run HPC benchmarks on Tensorflow: summary
Evaluated & good outcome:

● Programmability in TF is very good -
short clear programs

● Performance of RDMA transport is very
good

● Scaling number of GPUs is good

Evaluated - needs fixing:

● Python itself too slow for e.g. slicing
● Some locking on queues too coarse

Next steps:

● Achieve comparison with true
benchmarks

● Scale the number of nodes
● Leverage TF specific hardware

TensorFlow implementation &
networks
TF has a data flow graph model, deployable on many
different kinds of distributed hardware devices

deemed very important for HPC RDMA works extremely well

Distributed Tiled Matrix Multiplication

TF implementation of distributed matrix multiplication: effective and high performance.

Matrices are larger than single node memory. Workers and reducer run on different systems,
and exploit different numbers of GPU’s. Performance scaling on different clusters is good.

More complicated algorithms: easy to write
Conjugate Gradient (CG) & Fast Fourier
Transform (FFT) involve more complicated
programming:

● CG Reducer must wait for all results
from workers. TF queues implement
this.

● Tukey-Cooley FFT requires slicing of
data. Python cannot do that fast.

MLrunsHPC
TensorFlow.org. Publications about TPU’s.

● Domain specific chips for
ML are emerging (dozens of
startups!)

● 10x - 100x higher HW
capabilities

TPU - PCI ML accelerators: cards & clusters

36

TPU v3 POD (“cluster”)

TPU v3 PCI accelerator card

Example of ML hardware: TPU chips
TPU chips have 4 systolic arrays MXU (matrix multiply
unit) reducing memory accesses by ~100x:

Pass data between ~100K ALU’s. Small processing units,
using a global clock, no registers.

Only for TensorFlow ops.
~100T Ops/cycle (limited precision) 37

System Organization
Send TF graph as a whole to a TF node

Send individual TF operations
with their data to the TPU accelerator.

This includes instructions and data. The
TPU does not fetch instructions like a CPU

38

grpc over PCI

grpc over TCP/IP

storage

TPU v3.0 specs

39

TPU 3.0 card TPU 3.0 node TPU pod

#TPU’s 1 card, 4 chips, 16 MXU 4 cards 1024 cards, 256 nodes

mem BW 5 TB/sec 20 TB/sec 5 PB/sec

flops / sec (*) 100 TF/sec 400 TF/sec 100 PF/sec

Operations per clock cycle

CPU 10’s (cores)
CPU vectorized 1000 (core x vector length)
GPU 10K ‘s
TPU 128K (TPU v1)

* flops are of various precisions

This should raise eyebrows ...
256 nodes for 5PB/sec of BW and 100PF ???

pretty much a top 5 machine in top500.org
with 100x fewer systems (or 25x fewer
allowing for 16 vs 64 bit precision).

It would work very well for moderate
granularity computations, like SKA (and AI for
which it was made). Wouldn’t help with AMR
likely, but surrogates may do that.

GPU’s around 2003 evolved to GPGPU’s
through HPC.

Possible further enablers:

1. Are TensorFlow operations sufficient for
HPC?

2. does a more general systolic network
interconnect offer more opportunities?

3. Is mixed floating point precision
required? (cf. posithub.org)

40

Conclusions
Thank you
Questions

- This is a fast moving
emerging area

- Profound practical
applications

- Likely deep source for
theory

- Relationship between
physical laws and ML may
be easier to understand
than “real world” ML

