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This talk

▪What is the SKA telescope?  

▪Science cases for the SKA

▪What is the Science Data Processor?

▪Models of the computation

▪Parallel software & system architecture



My role

▪Computation project is led by Cambridge University

▪I’ve been an advisor & consultant to SKA since

▪Acknowledgement: 
▪A large group of people (~500) are working on this project
▪Background is publicly available, e.g. SDP Preliminary Design Review
▪Much material comes from other SKA presentations & documents



What is the SKA?



The Square Kilometre Array (SKA)

Next Generation radio telescope – compared to best current instruments it offers 
...
▪ ~100 times more sensitivity
▪ ~ 106 times faster imaging the sky
▪ More than  5 square km of collecting area over distances of >100km

Will address some of the key problems of astrophysics and cosmology (and 
physics)

▪ Builds on techniques developed originally in Cambridge 
▪ It is an Aperture Synthesis radio telescope (“interferometer”) 

Uses innovative technologies...
▪ Major ICT project
▪ Need performance at low unit cost





SKA – a partner to ALMA, EELT, JWST

Credit:A. 
Marinkovic/XCam/ALMA(ESO/NAOJ/NRAO)

Credit: Northrop Grumman (artists impression)

Credit:ESO/L. Calçada (artists impression)

Credit: SKA Organisation (artists impression)

European ELT
• ~40m optical telescope
• Completion ~2025
• ~$1.3 bn

JWST:
• 6.5m space near-infrared telescope
• Launch 2018
• ~$8 bn

ALMA:
• 66 high precision sub-mm antennas 
• Completed in 2013
• ~$1.5 bn

Square Kilometre Array – phase 1
• Two next generation antenna arrays
• Completion ~2025
• $0.80 bn



What will we see

▪Hubble Deep Field (HDF) ▪Very Large Array

~15 radio sources~ 3000 galaxies



Hubble - SKA

Hubble Deep Field (HDF) Simulation of SKA 
Observation

~ 3000 galaxies



In summary …

▪ SKA aims to be an “instrument” like CERN

▪ This discussion focuses on SKA1 - 2025
▪ Support from participating countries (budget ~$0.7B)

▪ SKA2 should have 10x more antennas – 2030?

▪ Caveat
▪ Ongoing changes 
▪ Some inconsistencies in the numbers

▪ Cf. NYT Oct 2016: 
“Maybe there are 100x more galaxies than we previously thought.”



SKA1 Implementation

Low Frequency Aperture Array

1000 stations 256 antennas each
Murchison, AU - 0.05 humans / sqkm
Compute in Perth

Mid Frequency Array

250 dishes with single receiver
Karoo, SA - 3 humans / sqkm
Compute in Cape Town (400 km)



2020: 250,000 antennas
2025: > 250,000 antennas



2020: 250 dishes
2025: 2500 dishes



Antenna array layout

SKA1–MID, –LOW: Max Baseline = 156km, 65 km 



Science cases



Science Headlines
Fundamental Forces & 
Particles

Gravity
▪ Radio Pulsar Tests of General 

Relativity
▪ Gravitational Waves
▪ Dark Energy

Magnetism
▪ Origin and Evolution of 

Cosmic Magnetism

Origins

Galaxy & Universe
▪ Cosmic dawn
▪ First Galaxies
▪ Galaxy Assembly & Evolution

Stars Planets & Life
▪ Protoplanetary disks
▪ Biomolecules
▪ SETI

skatelescope.org –
two very large books (free!) with science research articles surrounding SKA



Epoch of 
Re-Ionisation

▪ 21 cm Hydrogen 
spectral line (Hl) 

▪ Difficult to detect, 

▪ Tells us much about 
the dark ages: 400,000 
– 400,000,000 years



Pulsar Timing Array

What can be found:
• gravitational waves, cosmic censorhisp, 

“no-hair” hypothesis

• Nano-hertz range for frequencies, ms
pulsars, fluctuations of 1 in 10^20



Gravitational Waves  & SKA

From: C J Moore et al, LIGO-P1400129.



Computing in the SKA?



X X X X X X

SKY Image

Detect & 
amplify

Digitise & 
delay

Correlate

Process Calibrate, grid, FFT

Integrate

s

B

B . s

1 2

Astronomical signal 
(EM wave)

▪ Visibility – what is measured

V(B) =   E1 E2* = I(s) exp( i ω B.s/c )

▪ Solve for I(s)

▪ maximum baseline gives 
resolution: θmax ~ λ / Bmax

▪ Dish size determines Field of 
View (FoV):  θdish ~ λ / D

Standard interferometer



Challenge

Turn telescope data into science products

Scientists will consume this worldwide

The SKA telescope will probably live ~50 years

SDP computing hardware will refresh ~every 5 years

The initial 2023 computing system should exploit the SKA 
instrument sufficiently to deliver a competitive instrument



SDP top-level compute challenge

SDP Local Monitor & Control

Telescope Manager
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Data Processor

High Performance
~100 PF/sec

Data Intensive
~100 PB/job

Partially real-time
~10s

Read-intensive
Constrained

Long Term 
Archive

EB volume

100PB annually

Infrequent 
access 

Delivery System

Distribution
~100PB/y 

From Cape Town 
& Perth to rest of 
World

Visualization of 
100k by 100k by 
100k voxel cubes

Science Data Processor



Antennas Central Signal 
Processing (CSP)

High Performance 
Computing Facility (HPC)

Transfer antennas to CSP
2024: 20,000 PBytes/day
2030: 200,000 PBytes/day

Over 10’s to 1000’s kms

Imaging (SDP) – HPC problem
2024: 100 PBytes/day
2030: 10,000 PBytes/day

Over 10’s to 1000’s kms

HPC Processing
2024:  300 PFlop
2030:  30   EFlop

SKA – data schematic



Orchestration – interfaces



Radio astronomy 0.101

▪ @Antennas: wave guides, clocks, beam-forming, digitizers

▪ @Correlator (CSP): DSP for antenna data
▪ Delivers data for every pair of antenna’s (a “baseline”)
▪ Dramatically new scale for radio astronomy ~500K baselines
▪ Correlator averages and reduces data, delivers sample every 0.3 sec
▪ Data is delivered in frequency bands: ~100K bands
▪ 3 complex numbers delivered / band / 0.3 sec / baseline
▪ Do math: ~ 1 TB/sec of so called visibility data

▪ @Science Data Processor (SDP) – process correlator data
▪ Create images & find transients – these are “science products”
▪ Adjust for atmospheric and instrument effects calibration
▪ A total measurement lasts up to 6 hours, transients detected in ~10s



Flops vs. #channels & baseline



Baseline distribution
Each pair of telescopes has a 
baseline

Baselines rotate as time 
progresses

Each baseline has associated 
visibility data (“sample”)

Baselines are sparse & not 
regular, but totally predictable

The physical data structure 
strongly enables and constrains 
concurrency & parallelism

Simulated data from 250 SKA1-MID dishes



Understanding data & computation: 
Parametric model



SDP pipelines computing

▪ Solve for: 
▪ Imaging of the sky – every ~6 hour period
▪ Transients – to be found within ~5 sec
▪ Effects of the atmosphere, imperfect sampling and imperfect 

telescope mechanics/electronics (“calibration”)

▪ In soft-real time

▪ In order to:
▪ Find/measure very faint signals 
▪ Correct for some of the atmospheric/mechanical problems in real 

time 
▪ Produce “science-ready” data products 
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Pipelines

▪ Many similarities with other image processing

▪ Each step is
▪ Convolution with some kind of a “filter”
▪ Fourier transform
▪ E.g. “gridding” – approximating irregularly sampled data with a 

regular sample

▪ Why new & different software?
▪ The input data is sampled not on a grid, but on baselines
▪ The scale of the problem is much larger than RAM
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Relative kernel cost



Imaging analysis summary

▪About 10,000 operations per byte of I/O input 
▪ Iterate through the dataset about 10 times
▪ read = 10x write – need 10TB/sec read IO

▪Need about 100 PetaFLOP/second
▪ 0.5 Flops / byte read from RAM
▪ 200 PB/sec memory BW 



Efficiency

Computation demands 89 PF/sec sustained

Efficiency is estimated at 9 – 30%.   

Tied to energy related hardware parameters &
Physical data layout & cache re-use



Supercomputer parameters
2023 LFAA (AU) Mid (SA)

FLOPS 100 PF 360 PF

Buffer Ingest 7.3 TB/s 3.3 TB/s

Budget 45 M€ 50 M€

Power 3.5 MW 2 MW

Buffer storage 240 PB 30 PB

Storage / node 85 TB 5 TB

Archive storage 0.5 EB 1.1 EB



Parallel implementation & 
system architecture



Data Flow on System Architecture

Frequency

Time & 
baseline

Data parallelism
o Frequency channels give scaling
o Locality of uv data
o Replication for HA & lower RAM req.

Nothing more needed if each processing node 
can process a frequency channel completely

Processing nodes

Visibility data

Exploit	frequency	
independence

Grid	and	
de-grid FFT

Buffered	UV	data



Principles in parallelism

▪FFTW - ~1999
▪Massive search to find the most efficient sets of instructions
▪Very successful

▪Halide ~2012
▪Explore many strategies for so called “tiling problems”
▪Minute 15:01-17:28 of Halide Movie 



Data in the computation

▪ Two principal data types
▪ input is visibility – irregular, sparse uv grid of baselines
▪ output regular grid is sky image
▪ Messages can be “GB size”

▪ Different kinds of locality
▪ Splitting the stream by frequency
▪ Grouping visibilities by region
▪ Duplicating input data for fail over
▪ Duplicating input data for faceting – less memory use / more I/O



Problem size – locality view

Processing Elements – 100 PF/sec

Memory – ~1TB/node

Buffer– 25 PB/obs > ~50PB capacity1 TB/sec ingest I/O

10  TB/sec read bandwidth

200 PB/sec memory bandwidth

Primarily compute 
pipeline steps

Primarily contains grid
data (100Kx100K)



Long vs short buffer question

Processing requires up to 6 hours of ingest – buffer that.

Overlapping ingest and compute: double buffer ?

Double Buffer:  ~100PB, write 1TB/sec, read 10TB/sec
But processing time is uneven – double buffer:
minimizes storage cost, increases compute cost

21,600 TB – “unit of data ingest” to compute on

Ingesting buffer Processing buffer

Buffer 
memory



Memory Technology

The memory bandwidth of 200PB/sec remains the most 
problematic.
- it probably requires on-package memory (HMC, HBM)
- High Bandwidth Memory / Hybrid Memory Cube
- this offers ~10x BW of RAM
- it consumes too much energy (~50 pJ/byte)
- today we would look at 200K modules 

– somewhat too many



Visibility gridding & cache re-use

Time rotation of 
UV grid.

Only fetch edges
Re-use core



Stream fusion

▪ Some kernels exchange too much data

▪ Solution: deviate from pipeline actors by doing more 
operations and less data movement.

▪ Few compilers / frameworks support this with automatic 
computation

▪ Doing it manually is awkward for portability



Software approaches

▪ Creating software is a very high risk part of the project

▪ Ideal perspective:
▪ Execution framework from 3rd party
▪ Domain specific application language for pipelines
▪ Automatic optimization

▪ Many approaches:
▪ Adapting existing packages – MPI C++ applications
▪ Use a big-data framework like Spark
▪ Use HPC frameworks like Swift/T, Legion

▪ Remains undecided.



Storage hardware

NVM solutions - xPoint and other
Could deliver ~50 GB/sec / node
200 nodes could get 10TB/sec I/O BW
But distributed storage remains hard



Summary

▪ SKA next generation telescope
▪ Order of magnitude improvements
▪ Key science drivers: gravitational waves, ionization of primordial 

gas by first galaxies 
▪ Timeline
▪ Design finishes in 2018
▪ Construction starts 2019
▪ Commissioning 2021
▪ Full operations 2024

▪ Science Data Processor
▪ Aligned with computational model & industry data



Thank you!  Questions?



HPC Data / Big Data
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Sensor



Sensor big data

▪Radio astronomy
▪Remote sensing
▪Earth observation
▪Geophysics 
▪Medical (imaging or other) 
▪ Internet of Things?
– 10 Hz sampling air temperature inside your fridge?
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Tentative big data classification
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Application Input data 
volume

Input data 
density

Computational 
density

Message rate

HPC 
simulation

low high high medium

Map reduce 
analytics

high high medium low

Graph 
analytics

medium high low high

Sensor data high low medium low



Characteristics of sensor big data
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Noisy • Information content << sampling rate
• Combination/correlation of data necessary to find 

signals of interest -> volume! 
Multiple Streams of 
Input Data 

• Volume/shape/ characteristics of data known in 
advance

• High degree of inherent parallelism at the front-end of 
processing 

Calibration effects • Large sensors networks can not be made perfect
• Allow biases in measurement and find and correct for 

these in post-processing 

Incomplete/ 
imperfect sampling 

• Poor control over “experiment”
• Expensive to precisely specify the sampling points
• Non-parametric statistics from incomplete/imperfect 

data 


